Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Bioelectron Med ; 10(1): 10, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38594769

ABSTRACT

BACKGROUND: Glioblastoma (GBM) presents as an aggressive brain cancer, notorious for its recurrence and resistance to conventional treatments. This study aimed to assess the efficacy of the EMulate Therapeutics Voyager®, a non-invasive, non-thermal, non-ionizing, battery-operated, portable experimental medical device, in treating GBM. Using ultra-low radiofrequency energy (ulRFE) to modulate intracellular activity, previous preliminary results in patients have been encouraging. Now, with a focus on murine models, our investigation seeks to elucidate the device's mechanistic impacts, further optimizing its therapeutic potential and understanding its limitations. METHODS: The device employs a silicone over molded coil to deliver oscillating magnetic fields, which are believed to interact with and disrupt cellular targets. These fields are derived from the magnetic fluctuations of solvated molecules. Xenograft and syngeneic murine models were chosen for the study. Mice were injected with U-87 MG or GL261 glioma cells in their flanks and were subsequently treated with one of two ulRFE cognates: A1A, inspired by paclitaxel, or A2, based on murine siRNA targeting CTLA4 + PD1. A separate group of untreated mice was maintained as controls. RESULTS: Mice that underwent treatments with either A1A or A2 exhibited significantly reduced tumor sizes when compared to the untreated cohort. CONCLUSION: The EMulate Therapeutics Voyager® demonstrates promising potential in inhibiting glioma cells in vivo through its unique ulRFE technology and should be further studied in terms of biological effects in vitro and in vivo.

2.
Nature ; 618(7966): 842-848, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258671

ABSTRACT

Nonsense mutations are the underlying cause of approximately 11% of all inherited genetic diseases1. Nonsense mutations convert a sense codon that is decoded by tRNA into a premature termination codon (PTC), resulting in an abrupt termination of translation. One strategy to suppress nonsense mutations is to use natural tRNAs with altered anticodons to base-pair to the newly emerged PTC and promote translation2-7. However, tRNA-based gene therapy has not yielded an optimal combination of clinical efficacy and safety and there is presently no treatment for individuals with nonsense mutations. Here we introduce a strategy based on altering native tRNAs into  efficient suppressor tRNAs (sup-tRNAs) by individually fine-tuning their sequence to the physico-chemical properties of the amino acid that they carry. Intravenous and intratracheal lipid nanoparticle (LNP) administration of sup-tRNA in mice restored the production of functional proteins with nonsense mutations. LNP-sup-tRNA formulations caused no discernible readthrough at endogenous native stop codons, as determined by ribosome profiling. At clinically important PTCs in the cystic fibrosis transmembrane conductance regulator gene (CFTR), the sup-tRNAs re-established expression and function in cell systems and patient-derived nasal epithelia and restored airway volume homeostasis. These results provide a framework for the development of tRNA-based therapies with a high molecular safety profile and high efficacy in targeted PTC suppression.


Subject(s)
Codon, Nonsense , Cystic Fibrosis Transmembrane Conductance Regulator , RNA, Transfer , Animals , Mice , Amino Acids/genetics , Codon, Nonsense/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , RNA, Transfer/administration & dosage , RNA, Transfer/genetics , RNA, Transfer/therapeutic use , Base Pairing , Anticodon/genetics , Protein Biosynthesis , Nasal Mucosa/metabolism , Ribosome Profiling
3.
Pharmacol Res ; 187: 106562, 2023 01.
Article in English | MEDLINE | ID: mdl-36410673

ABSTRACT

Lipopolysaccharide binding protein (LBP) knockout mice models are protected against the deleterious effects of major acute inflammation but its possible physiological role has been less well studied. We aimed to evaluate the impact of liver LBP downregulation (using nanoparticles containing siRNA- Lbp) on liver steatosis, inflammation and fibrosis during a standard chow diet (STD), and in pathological non-obesogenic conditions, under a methionine and choline deficient diet (MCD, 5 weeks). Under STD, liver Lbp gene knockdown led to a significant increase in gene expression markers of liver inflammation (Itgax, Tlr4, Ccr2, Ccl2 and Tnf), liver injury (Krt18 and Crp), fibrosis (Col4a1, Col1a2 and Tgfb1), endoplasmic reticulum (ER) stress (Atf6, Hspa5 and Eif2ak3) and protein carbonyl levels. As expected, the MCD increased hepatocyte vacuolation, liver inflammation and fibrosis markers, also increasing liver Lbp mRNA. In this model, liver Lbp gene knockdown resulted in a pronounced worsening of the markers of liver inflammation (also including CD68 and MPO activity), fibrosis, ER stress and protein carbonyl levels, all indicative of non-alcoholic steatohepatitis (NASH) progression. At cellular level, Lbp gene knockdown also increased expression of the proinflammatory mediators (Il6, Ccl2), and markers of fibrosis (Col1a1, Tgfb1) and protein carbonyl levels. In agreement with these findings, liver LBP mRNA in humans positively correlated with markers of liver damage (circulating hsCRP, ALT activity, liver CRP and KRT18 gene expression), and with a network of genes involved in liver inflammation, innate and adaptive immune system, endoplasmic reticulum stress and neutrophil degranulation (all with q-value<0.05). In conclusion, current findings suggest that a significant downregulation in liver LBP levels promotes liver oxidative stress and inflammation, aggravating NASH progression, in physiological and pathological non-obesogenic conditions.


Subject(s)
Liver Cirrhosis , Liver , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Disease Models, Animal , Inflammation/genetics , Liver Cirrhosis/genetics , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , RNA, Messenger/metabolism
4.
Nanomedicine (Lond) ; 17(20): 1399-1410, 2022 08.
Article in English | MEDLINE | ID: mdl-36255044

ABSTRACT

Aim: To investigate the effect of incorporating bis(monoacylglycerol)phosphate (BMP) lipid into a lipid nanoparticle and the functional transport of mRNA by the formulated nanoparticles in vivo. Materials & methods: The nanoparticles were prepared from ionizable lipid, 1,2-distearoyl-sn-glycerol-3-phosphocholine, cholesterol, 1,2-dimyristoyl-sn-glycerol PEG 2000, BMP and formulated mRNA encoding human erythropoietin. We measured the effect of BMP on physicochemical properties and impact on functional efficacy to transport mRNA to its target cells/tissue as measured by protein expression both in vitro and in vivo. Results: Lipid nanoparticles composed of BMP displayed increased endosomal membrane fusion and improved mRNA delivery to the cytosol. Conclusion: The results establish the foundation for future development of these nanoparticulated entities by designing new BMP derivatives and correlating structures to enhanced pharmacokinetic profiles.


Subject(s)
Nanoparticles , Phosphates , Humans , Monoglycerides/metabolism , Nanoparticles/chemistry , RNA, Messenger
5.
Mol Ther Nucleic Acids ; 29: 599-613, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36090751

ABSTRACT

Circulating lipopolysaccharide-binding protein (LBP) is increased in individuals with liver steatosis. We aimed to evaluate the possible impact of liver LBP downregulation using lipid nanoparticle-containing chemically modified LBP small interfering RNA (siRNA) (LNP-Lbp UNA-siRNA) on the development of fatty liver. Weekly LNP-Lbp UNA-siRNA was administered to mice fed a standard chow diet, a high-fat and high-sucrose diet, and a methionine- and choline-deficient diet (MCD). In mice fed a high-fat and high-sucrose diet, which displayed induced liver lipogenesis, LBP downregulation led to reduced liver lipid accumulation, lipogenesis (mainly stearoyl-coenzyme A desaturase 1 [Scd1]) and lipid peroxidation-associated oxidative stress markers. LNP-Lbp UNA-siRNA also resulted in significantly decreased blood glucose levels during an insulin tolerance test. In mice fed a standard chow diet or an MCD, in which liver lipogenesis was not induced or was inhibited (especially Scd1 mRNA), liver LBP downregulation did not impact on liver steatosis. The link between hepatocyte LBP and lipogenesis was further confirmed in palmitate-treated Hepa1-6 cells, in primary human hepatocytes, and in subjects with morbid obesity. Altogether, these data indicate that siRNA against liver Lbp mRNA constitutes a potential target therapy for obesity-associated fatty liver through the modulation of hepatic Scd1.

6.
Biomed Pharmacother ; 151: 113156, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35643066

ABSTRACT

BACKGROUND AND AIMS: The sexual dimorphism in fat-mass distribution and circulating leptin and insulin levels is well known, influencing the progression of obesity-associated metabolic disease. Here, we aimed to investigate the possible role of lipopolysaccharide-binding protein (LBP) in this sexual dimorphism. METHODS: The relationship between plasma LBP and fat mass was evaluated in 145 subjects. The effects of Lbp downregulation, using lipid encapsulated unlocked nucleomonomer agent containing chemically modified-siRNA delivery system, were evaluated in mice. RESULTS: Plasma LBP levels were associated with fat mass and leptin levels in women with obesity, but not in men with obesity. In mice, plasma LBP downregulation led to reduced weight, fat mass and leptin gain after a high-fat and high-sucrose diet (HFHS) in females, in parallel to increased expression of adipogenic and thermogenic genes in visceral adipose tissue. This was not observed in males. Plasma LBP downregulation avoided the increase in serum LPS levels in HFHS-fed male and female mice. Serum LPS levels were positively correlated with body weight and fat mass gain, and negatively with markers of adipose tissue function only in female mice. The sexually dimorphic effects were replicated in mice with established obesity. Of note, LBP downregulation led to recovery of estrogen receptor alpha (Esr1) mRNA levels in females but not in males. CONCLUSION: LBP seems to exert a negative feedback on ERα-mediated estrogen action, impacting on genes involved in thermogenesis. The known decreased estrogen action and negative effects of metabolic endotoxemia may be targeted through LBP downregulation.


Subject(s)
Leptin , Lipopolysaccharides , Acute-Phase Proteins , Adipose Tissue , Animals , Carrier Proteins , Diet, High-Fat , Down-Regulation , Estrogens/metabolism , Female , Humans , Leptin/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Male , Membrane Glycoproteins , Mice , Mice, Inbred C57BL , Obesity/metabolism
7.
Mol Metab ; 60: 101487, 2022 06.
Article in English | MEDLINE | ID: mdl-35378329

ABSTRACT

OBJECTIVE: Fibrotic organ responses have recently been identified as long-term complications in diabetes. Indeed, insulin resistance and aberrant hepatic lipid accumulation represent driving features of progressive non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis and non-alcoholic steatohepatitis (NASH) to fibrosis. Effective pharmacological regimens to stop progressive liver disease are still lacking to-date. METHODS: Based on our previous discovery of transforming growth factor beta-like stimulated clone (TSC)22D4 as a key driver of insulin resistance and glucose intolerance in obesity and type 2 diabetes, we generated a TSC22D4-hepatocyte specific knockout line (TSC22D4-HepaKO) and exposed mice to control or NASH diet models. Mechanistic insights were generated by metabolic phenotyping and single-nuclei RNA sequencing. RESULTS: Hepatic TSC22D4 expression was significantly correlated with markers of liver disease progression and fibrosis in both murine and human livers. Indeed, hepatic TSC22D4 levels were elevated in human NASH patients as well as in several murine NASH models. Specific genetic deletion of TSC22D4 in hepatocytes led to reduced liver lipid accumulation, improvements in steatosis and inflammation scores and decreased apoptosis in mice fed a lipogenic MCD diet. Single-nuclei RNA sequencing revealed a distinct TSC22D4-dependent gene signature identifying an upregulation of mitochondrial-related processes in hepatocytes upon loss of TSC22D4. An enrichment of genes involved in the TCA cycle, mitochondrial organization, and triglyceride metabolism underscored the hepatocyte-protective phenotype and overall decreased liver damage as seen in mouse models of hepatocyte-selective TSC22D4 loss-of-function. CONCLUSIONS: Together, our data uncover a new connection between targeted depletion of TSC22D4 and intrinsic metabolic processes in progressive liver disease. Hepatocyte-specific reduction of TSC22D4 improves hepatic steatosis and promotes hepatocyte survival via mitochondrial-related mechanisms thus paving the way for targeted therapies.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Diabetes Mellitus, Type 2/metabolism , Fibrosis , Hepatocytes/metabolism , Humans , Lipids , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Transcription Factors/metabolism
8.
Mol Ther Nucleic Acids ; 24: 1-10, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-33738134

ABSTRACT

Polyglutamine (polyQ) diseases are inherited neurodegenerative disorders caused by expansion of cytosine-adenine-guanine (CAG)-trinucleotide repeats in causative genes. These diseases include spinal and bulbar muscular atrophy (SBMA), Huntington's disease, dentatorubral-pallidoluysian atrophy, and spinocerebellar ataxias. Targeting expanded CAG repeats is a common therapeutic approach to polyQ diseases, but concomitant silencing of genes with normal CAG repeats may lead to toxicity. Previous studies have shown that CAG repeat-targeting small interfering RNA duplexes (CAG-siRNAs) have the potential to selectively suppress mutant proteins in in vitro cell models of polyQ diseases. However, in vivo application of these siRNAs has not yet been investigated. In this study, we demonstrate that an unlocked nucleic acid (UNA)-modified CAG-siRNA shows high selectivity for polyQ-expanded androgen receptor (AR) inhibition in in vitro cell models and that lipid nanoparticle (LNP)-mediated delivery of the CAG-siRNA selectively suppresses mutant AR in the central nervous system of an SBMA mouse model. In addition, a subcutaneous injection of the LNP-delivered CAG-siRNA efficiently suppresses mutant AR in the skeletal muscle of the SBMA mouse model. These results support the therapeutic potential of LNP-delivered UNA-modified CAG-siRNAs for selective suppression of mutant proteins in SBMA and other polyQ diseases.

9.
J Med Chem ; 63(21): 12992-13012, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33119286

ABSTRACT

Ionizable cationic lipids are critical components involved in nanoparticle formulations, which are utilized in delivery platforms for RNA therapeutics. While general criteria regarding lipophilicity and measured pKa in formulation are understood to have impacts on utility in vivo, greater granularity with respect to the impacts of the structure on calculated and measured physicochemical parameters and the subsequent performance of those ionizable cationic lipids in in vivo studies would be beneficial. Herein, we describe structural alterations made within a lipid class exemplified by 4, which allow us to tune calculated and measured physicochemical parameters for improved performance, resulting in substantial improvements versus the state of the art at the outset of these studies, resulting in good in vivo activity within a range of measured basicity (pKa = 6.0-6.6) and lipophilicity (cLogD = 10-14).


Subject(s)
Lipids/chemistry , RNA, Small Interfering/metabolism , Transfection/methods , Animals , Cations/chemistry , Factor VII/antagonists & inhibitors , Factor VII/genetics , Factor VII/metabolism , Female , Humans , Kinetics , Lipids/chemical synthesis , Mice , Nanoparticles/chemistry , Particle Size , RNA Interference , RNA Stability , RNA, Small Interfering/blood , Structure-Activity Relationship
10.
Sci Rep ; 10(1): 8764, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32472093

ABSTRACT

The use of nucleic acid as a drug substance for vaccines and other gene-based medicines continues to evolve. Here, we have used a technology originally developed for mRNA in vivo delivery to enhance the immunogenicity of DNA vaccines. We demonstrate that neutralizing antibodies produced in rabbits and nonhuman primates injected with lipid nanoparticle (LNP)-formulated Andes virus or Zika virus DNA vaccines are elevated over unformulated vaccine. Using a plasmid encoding an anti-poxvirus monoclonal antibody (as a reporter of protein expression), we showed that improved immunogenicity is likely due to increased in vivo DNA delivery, resulting in more target protein. Specifically, after four days, up to 30 ng/mL of functional monoclonal antibody were detected in the serum of rabbits injected with the LNP-formulated DNA. We pragmatically applied the technology to the production of human neutralizing antibodies in a transchromosomic (Tc) bovine for use as a passive immunoprophylactic. Production of neutralizing antibody was increased by >10-fold while utilizing 10 times less DNA in the Tc bovine. This work provides a proof-of-concept that LNP formulation of DNA vaccines can be used to produce more potent active vaccines, passive countermeasures (e.g., Tc bovine), and as a means to produce more potent DNA-launched immunotherapies.


Subject(s)
Nanoparticles/administration & dosage , Orthohantavirus/immunology , Poxviridae/immunology , Vaccines, DNA , Viral Vaccines/immunology , Zika Virus/immunology , Animals , Animals, Genetically Modified , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cattle , Chlorocebus aethiops , Chromosomes, Artificial, Human/genetics , Dose-Response Relationship, Immunologic , Female , Genes, Immunoglobulin , Macaca fascicularis , Male , Neutralization Tests , Plasmids , Rabbits , Vero Cells
11.
Sci Rep ; 10(1): 8096, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415084

ABSTRACT

Abnormal regulation of ß-catenin initiates an oncogenic program that serves as a main driver of many cancers. Albeit challenging, ß-catenin is an attractive drug target due to its role in maintenance of cancer stem cells and potential to eliminate cancer relapse. We have identified C2, a novel ß-catenin inhibitor, which is a small molecule that binds to a novel allosteric site on the surface of ß-catenin. C2 selectively inhibits ß-catenin, lowers its cellular load and significantly reduces viability of ß-catenin-driven cancer cells. Through direct binding to ß-catenin, C2 renders the target inactive that eventually activates proteasome system for its removal. Here we report a novel pharmacologic approach for selective inhibition of ß-catenin via targeting a cryptic allosteric modulation site. Our findings may provide a new perspective for therapeutic targeting of ß-catenin.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Small Molecule Libraries/pharmacology , Wnt Signaling Pathway/drug effects , beta Catenin/antagonists & inhibitors , Allosteric Regulation , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Apoptosis , Cell Proliferation , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasms/metabolism , Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Small Molecule Libraries/chemistry , Small Molecule Libraries/isolation & purification , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
12.
Oncotarget ; 8(14): 22370-22384, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-26517684

ABSTRACT

Transcription factors (TFs) are a major class of protein signaling molecules that play key cellular roles in cancers such as the highly lethal brain cancer-glioblastoma (GBM). However, the development of specific TF inhibitors has proved difficult owing to expansive protein-protein interfaces and the absence of hydrophobic pockets. We uniquely defined the dimerization surface as an expansive parental pharmacophore comprised of several regional daughter pharmacophores. We targeted the OLIG2 TF which is essential for GBM survival and growth, we hypothesized that small molecules able to fit each subpharmacophore would inhibit OLIG2 activation. The most active compound was OLIG2 selective, it entered the brain, and it exhibited potent anti-GBM activity in cell-based assays and in pre-clinical mouse orthotopic models. These data suggest that (1) our multiple pharmacophore approach warrants further investigation, and (2) our most potent compounds merit detailed pharmacodynamic, biophysical, and mechanistic characterization for potential preclinical development as GBM therapeutics.


Subject(s)
Antineoplastic Agents/therapeutic use , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Brain Neoplasms/drug therapy , Drug Design , Glioblastoma/drug therapy , Guanidines/therapeutic use , Molecular Targeted Therapy , Nerve Tissue Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Basic Helix-Loop-Helix Transcription Factors/chemistry , Cell Growth Processes , Cell Survival/genetics , Computer Simulation , Humans , Mice , Mice, Nude , Molecular Structure , Nerve Tissue Proteins/chemistry , Oligodendrocyte Transcription Factor 2 , Protein Binding , Protein Conformation , Small Molecule Libraries , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
13.
Oncotarget ; 7(36): 57932-57942, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27462771

ABSTRACT

Zoledronic acid, a potent nitrogen-containing bisphosphonate (NBP), has been extensively used to limit bone turnover in a various diseases including tumors. Recent clinical studies have demonstrated direct anti-cancer effects of zoledronic acid, in addition to its clinical benefits for skeletal-related events. Here we investigated the effects of 4 clinically available NBPs on human tumor cell proliferation. Our data demonstrate a potent anti-proliferative effect of zoledronic acid against glioblastoma (GBM) cell lines, breast cancer cells and GBM patient-derived lines. Zoledronic acid also effectively inhibited GBM tumor growth in xenograft mouse models. Zoledronic acid strongly stimulated autophagy but not apoptotic signals in all tested cells. Only one intermediate product of cholesterols synthesis pathway, geranylgeranyl diphosphate (GGPP) rescued cells from the cytotoxic effects of zoledronic acid. To further investigate the effect of GGPP, we knocked down RABGGTA, which encodes a subunit of the Rabgeranylgeranyltransferase protein. This knockdown induced an effect similar to zoledronic acid in cancer cell lines. These data are promising and suggested a potential for zoledronic acid as an anti-cancer agent, through its ablation of the function of Rab proteins.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Diphosphonates/pharmacology , Nitrogen/chemistry , Animals , Antineoplastic Agents/chemistry , Autophagy , Bone Density Conservation Agents/pharmacology , Brain Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Diphosphonates/chemistry , Drug Screening Assays, Antitumor , Glioblastoma/drug therapy , Humans , Imidazoles/chemistry , MCF-7 Cells , Mice , Neoplasm Transplantation , Zoledronic Acid
14.
J Transl Med ; 13: 269, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26283544

ABSTRACT

BACKGROUND: The STAT3 transcription factor is a major intracellular signaling protein and is frequently dysregulated in the most common and lethal brain malignancy in adults, glioblastoma multiforme (GBM). Activation of STAT3 in GBM correlates with malignancy and poor prognosis. The phosphorylating signal transducer JAK2 activates STAT3 in response to cytokines and growth factors. Currently there are no JAK-STAT pathway inhibitors in clinical trials for GBM, so we sought to examine the anti-GBM activity of SAR317461 (Sanofi-Aventis), a newer generation, highly potent JAK2 inhibitor that exhibits low toxicity and good pharmacokinetics. SAR317461 was initially approved for patient testing in the treatment of primary myelofibrosis (PMF), and has shown activity in preclinical models of melanoma and pulmonary cancer, but has not been tested in GBM. METHODS: We hypothesized that a potent small molecule JAK2 inhibitor could overcome the heterogeneous nature of GBM, and suppress a range of patient derived GBM tumorsphere lines and immortalized GBM cell lines. We treated with SAR317461 to determine IC50 values, and using Western blot analysis we asked whether the response was linked to STAT3 expression. Western blot analysis, FACS, and cell viability studies were used to identify the mechanism of SAR317461 induced cell death. RESULTS: We report for the first time that the JAK2 inhibitor SAR317461 clearly inhibited STAT3 phosphorylation and had substantial activity against cells (IC50 1-10 µM) from 6 of 7 different patient GSC derived GBM tumorsphere lines and three immortalized GBM lines. One patient GSC derived line did not constitutively express STAT3 and was more resistant to SAR317461 (IC50 ≈25 µM). In terms of mechanism we found cleaved PARP and clear apoptosis following SAR317461. SAR317461 also induced autophagy and the addition of an autophagy inhibitor markedly enhanced cell killing by SAR317461. CONCLUSIONS: We conclude that SAR317461 potently inhibits STAT3 phosphorylation and that it has significant activity against those GBM cells which express activated STAT3. Further studies are warranted in terms of the potential of SAR317461 as single and combined therapy for selectively treating human patients afflicted with GBMs expressing activation of the JAK2-STAT3 signaling axis.


Subject(s)
Brain Neoplasms/metabolism , Enzyme Inhibitors/chemistry , Glioblastoma/metabolism , Janus Kinase 2/antagonists & inhibitors , Primary Myelofibrosis/metabolism , Pyrimidines/chemistry , STAT3 Transcription Factor/antagonists & inhibitors , Sulfonamides/chemistry , Adolescent , Adult , Aged , Autophagy , Brain Neoplasms/pathology , Cell Line, Tumor/drug effects , Cell Separation , Cell Survival , Down-Regulation , Female , Flow Cytometry , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Humans , Inhibitory Concentration 50 , Male , Middle Aged , Phosphorylation , Proportional Hazards Models , Young Adult
15.
Small ; 11(38): 5088-96, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26274918

ABSTRACT

The effect of complex biological fluids on the surface and structure of nanoparticles is a rapidly expanding field of study. One of the challenges holding back this research is the difficulty of recovering therapeutic nanoparticles from biological samples due to their small size, low density, and stealth surface coatings. Here, the first demonstration of the recovery and analysis of drug delivery nanoparticles from undiluted human plasma samples through the use of a new electrokinetic platform technology is presented. The particles are recovered from plasma through a dielectrophoresis separation force that is created by innate differences in the dielectric properties between the unaltered nanoparticles and the surrounding plasma. It is shown that this can be applied to a wide range of drug delivery nanoparticles of different morphologies and materials, including low-density nanoliposomes. These recovered particles can then be analyzed using different methods including scanning electron microscopy to monitor surface and structural changes that result from plasma exposure. This new recovery technique can be broadly applied to the recovery of nanoparticles from high conductance fluids in a wide range of applications.


Subject(s)
Drug Delivery Systems/methods , Nanoparticles/chemistry , Plasma/chemistry , Electrodes , Electrophoresis , Humans , Image Processing, Computer-Assisted , Microfluidics , Nanoparticles/ultrastructure , Silicon Dioxide/chemistry , Spectrophotometry, Ultraviolet
16.
Oncotarget ; 6(2): 1157-70, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25528767

ABSTRACT

Metabolic reprogramming is a key feature of tumorigenesis that is controlled by oncogenes. Enhanced utilization of glucose and glutamine are the best-established hallmarks of tumor metabolism. The oncogene c-Myc is one of the major players responsible for this metabolic alteration. However, the molecular mechanisms involved in Myc-induced metabolic reprogramming are not well defined. Here we identify p32, a mitochondrial protein known to play a role in the expression of mitochondrial respiratory chain complexes, as a critical player in Myc-induced glutamine addiction. We show that p32 is a direct transcriptional target of Myc and that high level of Myc in malignant brain cancers correlates with high expression of p32. Attenuation of p32 expression reduced growth rate of glioma cells expressing Myc and impaired tumor formation in vivo. Loss of p32 in glutamine addicted glioma cells induced resistance to glutamine deprivation and imparted sensitivity to glucose withdrawal. Finally, we provide evidence that p32 expression contributes to Myc-induced glutamine addiction of cancer cells. Our findings suggest that Myc promotes the expression of p32, which is required to maintain sufficient respiratory capacity to sustain glutamine metabolism in Myc transformed cells.


Subject(s)
Brain Neoplasms/genetics , Carrier Proteins/genetics , Glioma/genetics , Glutamine/metabolism , Mitochondrial Proteins/genetics , Proto-Oncogene Proteins c-myc/genetics , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Carrier Proteins/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glioma/metabolism , Glioma/pathology , Humans , Immunoblotting , Immunohistochemistry , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mitochondrial Proteins/metabolism , Models, Genetic , Proto-Oncogene Proteins c-myc/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Tumor Burden/genetics , Xenograft Model Antitumor Assays
17.
J Transl Med ; 12: 128, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24884660

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is an aggressive disease associated with poor survival. It is essential to account for the complexity of GBM biology to improve diagnostic and therapeutic strategies. This complexity is best represented by the increasing amounts of profiling ("omics") data available due to advances in biotechnology. The challenge of integrating these vast genomic and proteomic data can be addressed by a comprehensive systems modeling approach. METHODS: Here, we present an in silico model, where we simulate GBM tumor cells using genomic profiling data. We use this in silico tumor model to predict responses of cancer cells to targeted drugs. Initially, we probed the results from a recent hypothesis-independent, empirical study by Garnett and co-workers that analyzed the sensitivity of hundreds of profiled cancer cell lines to 130 different anticancer agents. We then used the tumor model to predict sensitivity of patient-derived GBM cell lines to different targeted therapeutic agents. RESULTS: Among the drug-mutation associations reported in the Garnett study, our in silico model accurately predicted ~85% of the associations. While testing the model in a prospective manner using simulations of patient-derived GBM cell lines, we compared our simulation predictions with experimental data using the same cells in vitro. This analysis yielded a ~75% agreement of in silico drug sensitivity with in vitro experimental findings. CONCLUSIONS: These results demonstrate a strong predictability of our simulation approach using the in silico tumor model presented here. Our ultimate goal is to use this model to stratify patients for clinical trials. By accurately predicting responses of cancer cells to targeted agents a priori, this in silico tumor model provides an innovative approach to personalizing therapy and promises to improve clinical management of cancer.


Subject(s)
Drug Screening Assays, Antitumor , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Computer Simulation , Humans , Retrospective Studies
18.
J Control Release ; 183: 146-53, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24685706

ABSTRACT

There is a great interest in targeting and selective ablation of populations of circulating cells for research or therapeutic purposes. Red blood cells (RBCs) are readily available and fully biocompatible long-circulating intravascular carriers (natural life is 120days) that are amenable to chemical modifications, drug loading and reinjection. Here we demonstrate that using our previously described lipophilic ligand painting strategy, red blood cells (RBCs) could be in one step converted into targeted entities that selectively seek and bind various cells in vitro and in vivo. In vitro, RBCs modified with lipophilic anti-EpCAM or anti-CD45 antibodies efficiently bound to cancer cells and leukocytes, forming characteristic rosettes. In vivo, intravenously injected RBCs painted with anti-CD45 antibody immediately associated with CD45 positive cells in blood, forming RBC-leukocyte rosettes. Moreover, anti-CD45-modified RBCs, but not the same amount of anti-CD45 antibody or anti-CD45-lipid conjugate (1-2µg/mouse), depleted over 50% of CD45+ leukocytes from circulation, with main clearance organs of leukocytes being liver and spleen with no visible deposition in kidneys and lungs. Anti-CD20 (Rituximab)-painted RBCs efficiently (over 90%) depleted CD19+/CD20+/CD45+ human lymphoma cells in mantle cell lymphoma (MCL) JeKo-1 model, while the same amount of rituximab-lipid (2µg/mouse) was much less efficient in lymphoma cell depletion. Treatment of MCL mice with rituximab-modified RBCs carrying only 2µg of the antibody resulted in a significant prolongation of survival as compared to the same amount of antibody-lipid control. Lipophilic ligand-painted RBCs is a novel tool that can be utilized for targeting blood borne cells for experimental immunology and drug delivery applications.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antigens, Neoplasm/immunology , Antineoplastic Agents/administration & dosage , Drug Carriers , Erythrocytes/immunology , Leukocytes/immunology , Neoplastic Cells, Circulating/immunology , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antigen-Antibody Reactions/immunology , Antigens, Neoplasm/blood , Antigens, Neoplasm/metabolism , Antineoplastic Agents/blood , Antineoplastic Agents/immunology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Carriers/chemistry , Erythrocytes/chemistry , Erythrocytes/cytology , Female , Humans , Leukocyte Reduction Procedures , Leukocytes/pathology , Ligands , Mice, Inbred BALB C , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Phosphatidylethanolamines/chemistry , Polyethylene Glycols/chemistry , Xenograft Model Antitumor Assays
19.
J Transl Med ; 12: 13, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24433351

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a therapeutic challenge, associated with high mortality. More effective GBM therapeutic options are urgently needed. Hence, we screened a large multi-class drug panel comprising the NIH clinical collection (NCC) that includes 446 FDA-approved drugs, with the goal of identifying new GBM therapeutics for rapid entry into clinical trials for GBM. METHODS: Screens using human GBM cell lines revealed 22 drugs with potent anti-GBM activity, including serotonergic blockers, cholesterol-lowering agents (statins), antineoplastics, anti-infective, anti-inflammatories, and hormonal modulators. We tested the 8 most potent drugs using patient-derived GBM cancer stem cell-like lines. Notably, the statins were active in vitro; they inhibited GBM cell proliferation and induced cellular autophagy. Moreover, the statins enhanced, by 40-70 fold, the pro-apoptotic activity of irinotecan, a topoisomerase 1 inhibitor currently used to treat a variety of cancers including GBM. Our data suggest that the mechanism of action of statins was prevention of multi-drug resistance protein MDR-1 glycosylation. This drug combination was synergistic in inhibiting tumor growth in vivo. Compared to animals treated with high dose irinotecan, the drug combination showed significantly less toxicity. RESULTS: Our data identifies a novel combination from among FDA-approved drugs. In addition, this combination is safer and well tolerated compared to single agent irinotecan. CONCLUSIONS: Our study newly identifies several FDA-approved compounds that may potentially be useful in GBM treatment. Our findings provide the basis for the rational combination of statins and topoisomerase inhibitors in GBM.


Subject(s)
Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/drug therapy , Drug Approval , Glioblastoma/drug therapy , United States Food and Drug Administration , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Autophagy/drug effects , Blood-Brain Barrier/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Camptothecin/administration & dosage , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Camptothecin/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Disease-Free Survival , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Irinotecan , Mice , Mice, Nude , Neoplastic Stem Cells/pathology , Quinolines/administration & dosage , Quinolines/pharmacology , Quinolines/therapeutic use , Spheroids, Cellular/pathology , United States , Xenograft Model Antitumor Assays
20.
Adv Healthc Mater ; 3(1): 142-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23798381

ABSTRACT

Red blood cells (RBCs) attract significant interest as carriers of biomolecules, drugs, and nanoparticles. In this regard, versatile technologies to attach molecules and ligands to the RBC surface are of great importance. Reported here is a fast and efficient surface painting strategy to attach ligands to the surface of RBCs, and the factors that control the stability and circulation properties of the modified RBCs in vivo. Distearoyl phosphatidylethanolamine anchor-conjugated immunoglobulin (IgG) efficiently incorporates in the RBC membrane following 15-30 min incubation. The optimized RBCs show prolonged circulation in vivo (70% of the injected dose after 48 h) and efficient retention of IgG in the membrane with terminal half-life of 73 h. The IgG construct is gradually lost from the RBCs mainly due to the transfer to plasma components, liver endothelial cells, and Kupffer cells. The ligand retention efficiency is partially dictated by ligand type, anchor type, and ligand concentration in the membrane, while RBC half-life is determined by initial concentration of the ligand in the membrane and presence of PEG linker between the ligand and the anchor. This work provides important guidance for non-covalent surface painting of RBCs as well as other types of blood borne cells for in vivo therapeutic and targeting applications.


Subject(s)
Erythrocytes/cytology , Immunoglobulins/chemistry , Ligands , Phosphatidylethanolamines/chemistry , Polyethylene Glycols/chemistry , Animals , Cell Membrane/chemistry , Cell Membrane/metabolism , Erythrocytes/chemistry , Erythrocytes/pathology , Female , Half-Life , Immunoglobulins/metabolism , Mice , Mice, Inbred BALB C , Rats , Surface Properties , Temperature , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...