Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Tradit Complement Med ; 14(3): 237-255, 2024 May.
Article in English | MEDLINE | ID: mdl-38707924

ABSTRACT

This review aims to argue how using probiotics can improve anxiety and depressive behaviour without adverse effects, also exploring the impact of postbiotics on it. Specifically, probiotics have drawn more attention as effective alternative treatments, considering the rising cost of antidepressant and anti-anxiety drugs and the high risk of side effects. Depression and anxiety disorders are among the most common mental illnesses in the world's population, characterised by low mood, poor general interest, and cognitive or motor dysfunction. Thus, this study analysed published literature on anxiety, depression, and probiotic supplementation from PubMed and Scopus, focusing on the last twenty years. This study focused on the effect of probiotics on mental health as they have drawn more attention because of their extensive clinical applications and positive impact on various diseases. Numerous studies have demonstrated how the gut microbiota might be critical for mood regulation and how probiotics can affect host health by regulating the gut-brain axis. By comparing the different works analysed, it was possible to identify a strategy by which they are selected and employed and, at the same time, to assess how the effect of probiotics can be optimised using postbiotics, an innovation to improve mental well-being in humans.

2.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731995

ABSTRACT

The gut-brain axis is a bidirectional relationship between the microbiota and the brain; genes related to the brain and gut synaptic formation are similar. Research on the causal effects of gut microbiota on human behavior, brain development, and function, as well as the underlying molecular processes, has emerged in recent decades. Probiotics have been shown in several trials to help reduce anxiety and depressive symptoms. Because of this, probiotic combinations have been tested in in vitro models to see whether they might modulate the gut and alleviate depression and anxiety. Therefore, we sought to determine whether a novel formulation might affect the pathways controlling anxiety and depression states and alter gut barrier activities in a 3D model without having harmful side effects. Our findings indicate that B. bifidum novaBBF7 10 mg/mL, B. longum novaBLG2 5 mg/mL, and L. paracasei TJB8 10 mg/mL may influence the intestinal barrier and enhance the synthesis of short-chain fatty acids. Additionally, the probiotics studied did not cause neuronal damage and, in combination, exert a protective effect against the condition of anxiety and depression triggered by L-Glutamate. All these findings show that probiotics can affect gut function to alter the pathways underlying anxiety and depression.


Subject(s)
Anxiety , Depression , Gastrointestinal Microbiome , Probiotics , Anxiety/therapy , Humans , Gastrointestinal Microbiome/drug effects , Brain-Gut Axis , Dietary Supplements
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732008

ABSTRACT

Neuropathy affects 7-10% of the general population and is caused by a lesion or disease of the somatosensory system. The limitations of current therapies highlight the necessity of a new innovative approach to treating neuropathic pain (NP) based on the close correlation between oxidative stress, inflammatory process, and antioxidant action. The advantageous outcomes of a novel combination composed of Hop extract, Propolis, Ginkgo Biloba, Vitamin B, and palmitoylethanolamide (PEA) used as a treatment was evaluated in this study. To assess the absorption and biodistribution of the combination, its bioavailability was first examined in a 3D intestinal barrier model that replicated intestinal absorption. Further, a 3D nerve tissue model was developed to study the biological impacts of the combination during the essential pathways involved in NP. Our findings show that the combination could cross the intestinal barrier and reach the peripheral nervous system, where it modulates the oxidative stress, inflammation levels, and myelination mechanism (increased NRG, MPZ, ERB, and p75 levels) under Schwann cells damaging. This study proves the effectiveness of Ginkgo Biloba, Propolis, Hop extract, Vitamin B, and PEA in avoiding nerve damage and suggests a potential alternative nutraceutical treatment for NP and neuropathies.


Subject(s)
Amides , Dietary Supplements , Ethanolamines , Neuralgia , Palmitic Acids , Plants, Medicinal , Ethanolamines/pharmacology , Palmitic Acids/pharmacology , Palmitic Acids/administration & dosage , Animals , Neuralgia/drug therapy , Amides/pharmacology , Amides/chemistry , Plants, Medicinal/chemistry , Polyphenols/pharmacology , Polyphenols/chemistry , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rats , Male , Antioxidants/pharmacology , Ginkgo biloba/chemistry , Humans
4.
Foods ; 13(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38472887

ABSTRACT

Chronic oxidative stress has been consistently linked to age-related diseases, conditions, and degenerative syndromes. Specifically, the brain is the organ that significantly contributes to declining quality of life in ageing. Since the body cannot completely counteract the detrimental effects of oxidative stress, nutraceuticals' antioxidant properties have received significant attention in recent years. This study assesses the potential health benefits of a novel combination of glutathione, vitamin D3, and N-acetylcysteine. To examine the combination's absorption and biodistribution and confirm that it has no harmful effects, the bioavailability of the mixture was first evaluated in a 3D model that mimicked the intestinal barrier. Further analyses on the blood-brain barrier was conducted to determine the antioxidant effects of the combination in the nervous system. The results show that the combination reaches the target and successfully crosses the blood-brain and intestinal barriers, demonstrating enhanced advantages on the neurological system, such as a reduction (about 10.5%) in inflammation and enhancement in cell myelination (about 20.4%) and brain tropism (about 18.1%) compared to the control. The results support the cooperative effect of N-acetylcysteine, vitamin D3, and glutathione to achieve multiple health benefits, outlining the possibility of an alternative nutraceutical approach.

5.
Int J Mol Sci ; 25(4)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38396866

ABSTRACT

Vitamin D3 (VitD3) plays a crucial role in various cellular functions through its receptor interaction. The biological activity of Vitamin D3 can vary based on its solubility and stability. Thus, the challenge lies in maximizing its biological effects through its complexation within cyclodextrin (ßNS-CDI 1:4) nanosponges (NS) (defined as VitD3NS). Therefore, its activity has been evaluated on two different gut-brain axes (healthy gut/degenerative brain and inflammatory bowel syndrome gut/degenerative brain axis). At the gut level, VitD3-NS mitigated liposaccharide-induced damage (100 ng/mL; for 48 h), restoring viability, integrity, and activity of tight junctions and reducing ROS production, lipid peroxidation, and cytokines levels. Following intestinal transit, VitD3-NS improved the neurodegenerative condition in the healthy axis and the IBS model, suggesting the ability of VitD3-NS to preserve efficacy and beneficial effects even in IBS conditions. In conclusion, this study demonstrates the ability of this novel form of VitD3, named VitD3-NS, to act on the gut-brain axis in healthy and damaged conditions, emphasizing enhanced biological activity through VitD3 complexation, as such complexation increases the beneficial effect of vitamin D3 in both the gut and brain by about 50%.


Subject(s)
Cholecalciferol , Irritable Bowel Syndrome , Humans , Cholecalciferol/pharmacology , Cholecalciferol/therapeutic use , Irritable Bowel Syndrome/drug therapy , Brain-Gut Axis , Cytokines , Brain , Vitamin D/pharmacology , Vitamin D/therapeutic use
6.
Int J Mol Sci ; 25(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38397054

ABSTRACT

BACKGROUND: Peripheral neuropathy is caused by a malfunction in the axons and myelin sheaths of peripheral nerves and motor and sensory neurons. In this context, nonpharmacological treatments with antioxidant potential have attracted much attention due to the issues that some conventional pharmaceutical therapy can generate. Most of these treatments contain lipoic acid, but issues have emerged regarding its use. Considering this, the present study evaluated the beneficial effects of nutraceuticals based on Gastrodiae elata dry extract 10:1 or lipoic acid in combination with other substances (such as citicholine, B vitamins, and acetyl L-carnitine). METHOD: To assess the combination's absorption and biodistribution and exclude cytotoxicity, its bioavailability was first examined in a 3D intestinal barrier model that replicated oral ingestion. Subsequently, a 3D model of nerve tissue was constructed to investigate the impacts of the new combination on the significant pathways dysregulated in peripheral neuropathy. RESULTS: Our findings show that the novel combination outperformed in initial pain relief response and in recovering the mechanism of nerve healing following Schwann cell injury by successfully crossing the gut barrier and reaching the target site. CONCLUSION: This article describes a potential alternative nutraceutical approach supporting the effectiveness of combinations with Gastrodiae elata extract in decreasing neuropathy and regulating pain pathways.


Subject(s)
Drugs, Chinese Herbal , Neuralgia , Thioctic Acid , Humans , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use , Tissue Distribution , Neuralgia/drug therapy , Dietary Supplements
7.
Int J Mol Sci ; 24(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37569657

ABSTRACT

Despite the identification of several innovative targets for avoiding cognitive decline, there has yet to be a widely accepted approach that deals with minimising the deterioration of cognitive function. In this light, recent studies suggest that regulating the gut-brain axis with probiotics is a potential therapeutic strategy to support brain health. For this reason, in vitro models were used to examine the efficacy of different probiotic combinations to enhance intestinal homeostasis and positively affect the brain. Therefore, the new formulation has been evaluated for its capacity to modify intestinal barrier functions in a 3D in vitro model without any adverse effects and directly impact the mechanisms underlying cognitive function in a gut-brain axis model. According to our findings, B. bifidum novaBBF7 10 mg/mL, B. longum novaBLG2 5 mg/mL and L. paracasei TJB8 10 mg/mL may successfully modify the intestinal barrier and improve SCFA production. Successively, the probiotics studied caused no harm at the neuronal level, as demonstrated by iNOS, mitochondrial potential, and cell viability tests, confirming their safety features and enhancing antioxidant mechanisms and antineuroinflammation activity. Additionally, the damage caused by oxidative stress was also healed, and critical pathways that result in cognitive impairment were changed by synergetic action, supporting the hypothesis that brain ageing and neurodegeneration are slowed down. All these findings demonstrate the ability of probiotics to affect cognitive processes and their ability to sustain the mechanisms underlying cognitive function by acting on intestinal function.


Subject(s)
Bifidobacterium bifidum , Bifidobacterium longum , Lacticaseibacillus paracasei , Probiotics , Bifidobacterium bifidum/physiology , Brain-Gut Axis , Probiotics/pharmacology , Probiotics/therapeutic use , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...