Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(2): 254-262, 2017 03.
Article in English | MEDLINE | ID: mdl-26714142

ABSTRACT

The utilization of Indonesian crowing chickens is increasing; as such, assessing their genetic structures is important to support the conservation of their genetic resources. This study analyzes the matrilineal evolution of Indonesian crowing chickens based on the mtDNA displacement loop D-loop region to clarify their phylogenetic relationships, possible maternal origin, and possible routes of chicken dispersal. The neighbor-joining tree reveals that the majority of Indonesian crowing chickens belong to haplogroups B, D, and E, but haplogroup D harbored most of them. The Bayesian analysis also reveals that Indonesian crowing chickens derive from Bekisar chicken, a hybrid of the green junglefowl, suggesting the possible contribution of green junglefowl to chicken domestication. There appear at least three maternal lineages of Indonesian chicken origins indicated by the median network profile of mtDNA D-loop haplotypes, namely (1) Chinese; (2) Chinese, Indian, and other Southeast Asian chickens; and (3) Indian, Chinese, Southeast Asian, Japanese, and European chickens. Chicken domestication might be centered in China, India, Indonesia, and other Southeast Asian countries, supporting multiple maternal origins of Indonesian crowing chickens. A systematic breeding program of indigenous chickens will be very important to retain the genetic diversity for future use and conservation.


Subject(s)
Chickens/genetics , DNA, Mitochondrial/genetics , Animal Distribution , Animals , Bayes Theorem , Breeding , Domestication , Evolution, Molecular , Female , Haplotypes , Indonesia , Phylogeny
2.
Mol Biol Evol ; 32(10): 2515-33, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26085518

ABSTRACT

Despite much attention, history of sheep (Ovis aries) evolution, including its dating, demographic trajectory and geographic spread, remains controversial. To address these questions, we generated 45 complete and 875 partial mitogenomic sequences, and performed a meta-analysis of these and published ovine mitochondrial DNA sequences (n = 3,229) across Eurasia. We inferred that O. orientalis and O. musimon share the most recent female ancestor with O. aries at approximately 0.790 Ma (95% CI: 0.637-0.934 Ma) during the Middle Pleistocene, substantially predating the domestication event (∼8-11 ka). By reconstructing historical variations in effective population size, we found evidence of a rapid population increase approximately 20-60 ka, immediately before the Last Glacial Maximum. Analyses of lineage expansions showed two sheep migratory waves at approximately 4.5-6.8 ka (lineages A and B: ∼6.4-6.8 ka; C: ∼4.5 ka) across eastern Eurasia, which could have been influenced by prehistoric West-East commercial trade and deliberate mating of domestic and wild sheep, respectively. A continent-scale examination of lineage diversity and approximate Bayesian computation analyses indicated that the Mongolian Plateau region was a secondary center of dispersal, acting as a "transportation hub" in eastern Eurasia: Sheep from the Middle Eastern domestication center were inferred to have migrated through the Caucasus and Central Asia, and arrived in North and Southwest China (lineages A, B, and C) and the Indian subcontinent (lineages B and C) through this region. Our results provide new insights into sheep domestication, particularly with respect to origins and migrations to and from eastern Eurasia.


Subject(s)
Animal Migration/physiology , Genomics , Mitochondria/genetics , Sheep/genetics , Animals , Animals, Domestic/genetics , DNA, Mitochondrial/genetics , Female , Genetic Variation , Geography , Meta-Analysis as Topic , Models, Genetic , Phylogeny , Selection, Genetic , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...