Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38676228

ABSTRACT

Notifications are an essential part of the user experience on smart mobile devices. While some apps have to notify users immediately after an event occurs, others can schedule notifications strategically to notify them only on opportune moments. This tailoring allows apps to shorten the users' interaction delay. In this paper, we present the results of a comprehensive study that identified the factors that influence users' interaction delay to their smartphone notifications. We analyzed almost 10 million notifications collected in-the-wild from 922 users and computed their response times with regard to their demographics, their Big Five personality trait scores and the device's charging state. Depending on the app category, the following tendencies can be identified over the course of the day: Most notifications were logged in late morning and late afternoon. This number decreases in the evening, between 8 p.m. and 11 p.m., and at the same time exhibits the lowest average interaction delays at daytime. We also found that the user's sex and age is significantly associated with the response time. Based on the results of our study, we encourage developers to incorporate more information on the user and the executing device in their notification strategy to notify users more effectively.


Subject(s)
Mobile Applications , Smartphone , Humans , Female , Male , Adult , Middle Aged , Time Factors , Young Adult , Adolescent
2.
Artif Intell Med ; 143: 102616, 2023 09.
Article in English | MEDLINE | ID: mdl-37673561

ABSTRACT

BACKGROUND: Medical use cases for machine learning (ML) are growing exponentially. The first hospitals are already using ML systems as decision support systems in their daily routine. At the same time, most ML systems are still opaque and it is not clear how these systems arrive at their predictions. METHODS: In this paper, we provide a brief overview of the taxonomy of explainability methods and review popular methods. In addition, we conduct a systematic literature search on PubMed to investigate which explainable artificial intelligence (XAI) methods are used in 450 specific medical supervised ML use cases, how the use of XAI methods has emerged recently, and how the precision of describing ML pipelines has evolved over the past 20 years. RESULTS: A large fraction of publications with ML use cases do not use XAI methods at all to explain ML predictions. However, when XAI methods are used, open-source and model-agnostic explanation methods are more commonly used, with SHapley Additive exPlanations (SHAP) and Gradient Class Activation Mapping (Grad-CAM) for tabular and image data leading the way. ML pipelines have been described in increasing detail and uniformity in recent years. However, the willingness to share data and code has stagnated at about one-quarter. CONCLUSIONS: XAI methods are mainly used when their application requires little effort. The homogenization of reports in ML use cases facilitates the comparability of work and should be advanced in the coming years. Experts who can mediate between the worlds of informatics and medicine will become more and more in demand when using ML systems due to the high complexity of the domain.


Subject(s)
Artificial Intelligence , Machine Learning , Hospitals , Supervised Machine Learning , Delivery of Health Care
3.
IEEE J Biomed Health Inform ; 27(6): 2794-2805, 2023 06.
Article in English | MEDLINE | ID: mdl-37023154

ABSTRACT

At the beginning of the COVID-19 pandemic, with a lack of knowledge about the novel virus and a lack of widely available tests, getting first feedback about being infected was not easy. To support all citizens in this respect, we developed the mobile health app Corona Check. Based on a self-reported questionnaire about symptoms and contact history, users get first feedback about a possible corona infection and advice on what to do. We developed Corona Check based on our existing software framework and released the app on Google Play and the Apple App Store on April 4, 2020. Until October 30, 2021, we collected 51,323 assessments from 35,118 users with explicit agreement of the users that their anonymized data may be used for research purposes. For 70.6% of the assessments, the users additionally shared their coarse geolocation with us. To the best of our knowledge, we are the first to report about such a large-scale study in this context of COVID-19 mHealth systems. Although users from some countries reported more symptoms on average than users from other countries, we did not find any statistically significant differences between symptom distributions (regarding country, age, and sex). Overall, the Corona Check app provided easily accessible information on corona symptoms and showed the potential to help overburdened corona telephone hotlines, especially during the beginning of the pandemic. Corona Check thus was able to support fighting the spread of the novel coronavirus. mHealth apps further prove to be valuable tools for longitudinal health data collection.


Subject(s)
COVID-19 , Mobile Applications , Telemedicine , Humans , Pandemics , Self-Assessment , Surveys and Questionnaires
4.
Article in English | MEDLINE | ID: mdl-34299846

ABSTRACT

Physical and mental well-being during the COVID-19 pandemic is typically assessed via surveys, which might make it difficult to conduct longitudinal studies and might lead to data suffering from recall bias. Ecological momentary assessment (EMA) driven smartphone apps can help alleviate such issues, allowing for in situ recordings. Implementing such an app is not trivial, necessitates strict regulatory and legal requirements, and requires short development cycles to appropriately react to abrupt changes in the pandemic. Based on an existing app framework, we developed Corona Health, an app that serves as a platform for deploying questionnaire-based studies in combination with recordings of mobile sensors. In this paper, we present the technical details of Corona Health and provide first insights into the collected data. Through collaborative efforts from experts from public health, medicine, psychology, and computer science, we released Corona Health publicly on Google Play and the Apple App Store (in July 2020) in eight languages and attracted 7290 installations so far. Currently, five studies related to physical and mental well-being are deployed and 17,241 questionnaires have been filled out. Corona Health proves to be a viable tool for conducting research related to the COVID-19 pandemic and can serve as a blueprint for future EMA-based studies. The data we collected will substantially improve our knowledge on mental and physical health states, traits and trajectories as well as its risk and protective factors over the course of the COVID-19 pandemic and its diverse prevention measures.


Subject(s)
COVID-19 , Mobile Applications , Ecological Momentary Assessment , Humans , Pandemics/prevention & control , SARS-CoV-2
5.
Curr Top Behav Neurosci ; 51: 175-189, 2021.
Article in English | MEDLINE | ID: mdl-33840077

ABSTRACT

Tinnitus is a common symptom of a phantom sound perception with a considerable socioeconomic impact. Tinnitus pathophysiology is enigmatic and its significant heterogeneity reflects a wide spectrum of clinical manifestations, severity and annoyance among tinnitus sufferers. Although several interventions have been suggested, currently there is no universally accepted treatment. Moreover, there is no well-established correlation between tinnitus features or patients' characteristics and projection of treatment response. At the clinical level, this practically means that selection of treatment is not based on expected outcomes for the particular patient.The complexity of tinnitus and lack of well-adapted prognostic factors for treatment selection highlight a potential role for a decision support system (DSS). A DSS is an informative system, based on big data that aims to facilitate decision-making based on: specific rules, retrospective data reflecting results, patient profiling and predictive models. Therefore, it can use algorithms evaluating numerous parameters and indicate the weight of their contribution to the final outcome. This means that DSS can provide additional information, exceeding the typical questions of superiority of one treatment versus another, commonly addressed in literature.The development of a DSS for tinnitus treatment selection will make use of an underlying database consisting of medical, epidemiological, audiological, electrophysiological, genetic and tinnitus subtyping data. Algorithms will be developed with the use of machine learning and data mining techniques. Based on the profile features identified as prognostic these algorithms will be able to suggest whether additional examinations are needed for a robust result as well as which treatment or combination of treatments is optimal for every patient in a personalized level.In this manuscript we carefully define the conceptual basis for a tinnitus treatment selection DSS. We describe the big data set and the knowledge base on which the DSS will be based and the algorithms that will be used for prognosis and treatment selection.


Subject(s)
Decision Support Systems, Clinical , Tinnitus , Big Data , Humans , Retrospective Studies , Tinnitus/therapy
6.
Prog Brain Res ; 260: 441-451, 2021.
Article in English | MEDLINE | ID: mdl-33637231

ABSTRACT

Tinnitus is the perception of a phantom sound and the patient's reaction to it. Although much progress has been made, tinnitus remains a scientific and clinical enigma of high prevalence and high economic burden, with an estimated prevalence of 10%-20% among the adult population. The EU is funding a new collaborative project entitled "Unification of Treatments and Interventions for Tinnitus Patients" (UNITI, grant no. 848261) under its Horizon 2020 framework. The main goal of the UNITI project is to set the ground for a predictive computational model based on existing and longitudinal data attempting to address the question of which treatment or combination of treatments is optimal for a specific patient group based on certain parameters. Clinical, epidemiological, genetic and audiological data, including signals reflecting ear-brain communication, as well as patients' medical history, will be analyzed making use of existing databases. Predictive factors for different patient groups will be extracted and their prognostic relevance validated through a Randomized Clinical Trial (RCT) in which different patient groups will undergo a combination of tinnitus therapies targeting both auditory and central nervous systems. From a scientific point of view, the UNITI project can be summarized into the following research goals: (1) Analysis of existing data: Results of existing clinical studies will be analyzed to identify subgroups of patients with specific treatment responses and to identify systematic differences between the patient groups at the participating clinical centers. (2) Genetic and blood biomarker analysis: High throughput Whole Exome Sequencing (WES) will be performed in well-characterized chronic tinnitus cases, together with Proximity Extension Assays (PEA) for the identification of blood biomarkers for tinnitus. (3) RCT: A total of 500 patients will be recruited at five clinical centers across Europe comparing single treatments against combinational treatments. The four main treatments are Cognitive Behavioral Therapy (CBT), hearing aids, sound stimulation, and structured counseling. The consortium will also make use of e/m-health applications for the treatment and assessment of tinnitus. (4) Decision Support System: An innovative Decision Support System will be implemented, integrating all available parameters (epidemiological, clinical, audiometry, genetics, socioeconomic and medical history) to suggest specific examinations and the optimal intervention strategy based on the collected data. (5) Financial estimation analysis: A cost-effectiveness analysis for the respective interventions will be calculated to investigate the economic effects of the interventions based on quality-adjusted life years. In this paper, we will present the UNITI project, the scientific questions that it aims to address, the research consortium, and the organizational structure.


Subject(s)
Hearing Aids , Tinnitus , Acoustic Stimulation , Cognitive Behavioral Therapy , Humans , Sound , Tinnitus/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...