Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 27(21): 3675-3687, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30060141

ABSTRACT

Fibrillin microfibrils are extracellular matrix assemblies that form the template for elastic fibres, endow blood vessels, skin and other elastic tissues with extensible properties. They also regulate the bioavailability of potent growth factors of the TGF-ß superfamily. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)10 is an essential factor in fibrillin microfibril function. Mutations in fibrillin-1 or ADAMTS10 cause Weill-Marchesani syndrome (WMS) characterized by short stature, eye defects, hypermuscularity and thickened skin. Despite its importance, there is poor understanding of the role of ADAMTS10 and its function in fibrillin microfibril assembly. We have generated an ADAMTS10 WMS mouse model using Clustered Regularly Spaced Interspaced Short Palindromic Repeats and CRISPR associated protein 9 (CRISPR-Cas9) to introduce a truncation mutation seen in WMS patients. Homozygous WMS mice are smaller and have shorter long bones with perturbation to the zones of the developing growth plate and changes in cell proliferation. Furthermore, there are abnormalities in the ciliary apparatus of the eye with decreased ciliary processes and abundant fibrillin-2 microfibrils suggesting perturbation of a developmental expression switch. WMS mice have increased skeletal muscle mass and more myofibres, which is likely a consequence of an altered skeletal myogenesis. These results correlated with expression data showing down regulation of Growth differentiation factor (GDF8) and Bone Morphogenetic Protein (BMP) growth factor genes. In addition, the mitochondria in skeletal muscle are larger with irregular shape coupled with increased phospho-p38 mitogen-activated protein kinase (MAPK) suggesting muscle remodelling. Our data indicate that decreased SMAD1/5/8 and increased p38/MAPK signalling are associated with ADAMTS10-induced WMS. This model will allow further studies of the disease mechanism to facilitate the development of therapeutic interventions.


Subject(s)
ADAMTS Proteins/genetics , Disease Models, Animal , Microfibrils/metabolism , Mutation , Signal Transduction , Weill-Marchesani Syndrome/metabolism , ADAMTS Proteins/metabolism , Animals , MAP Kinase Signaling System , Mice , Mice, Transgenic , Smad Proteins, Receptor-Regulated/metabolism , Weill-Marchesani Syndrome/genetics
2.
J Clin Invest ; 127(10): 3861-3865, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28920921

ABSTRACT

The short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in human cell culture. Depending on the nature of the mutation, CBZ application stimulated proteolysis of misfolded collagen X by either autophagy or proteasomal degradation, thereby reducing intracellular accumulation of mutant collagen. In MCDS mice expressing the Col10a1.pN617K mutation, CBZ reduced the MCDS-associated expansion of the growth plate hypertrophic zone, attenuated enhanced expression of ER stress markers such as Bip and Atf4, increased bone growth, and reduced skeletal dysplasia. CBZ produced these beneficial effects by reducing the MCDS-associated abnormalities in hypertrophic chondrocyte differentiation. Stimulation of intracellular proteolysis using CBZ treatment may therefore be a clinically viable way of treating the ER stress-associated dwarfism MCDS.


Subject(s)
Carbamazepine/pharmacology , Chondrocytes/metabolism , Collagen Type X/biosynthesis , Dwarfism/metabolism , Endoplasmic Reticulum Stress , Mutation , Proteolysis , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Animals , Chondrocytes/pathology , Collagen Type X/genetics , Dwarfism/genetics , Dwarfism/pathology , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Mice
3.
Sci Rep ; 6: 35956, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27779234

ABSTRACT

ADAMTS10 and ADAMTS6 are homologous metalloproteinases with ill-defined roles. ADAMTS10 mutations cause Weill-Marchesani syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations also cause WMS. However little is known about ADAMTS6 function. ADAMTS10 is resistant to furin cleavage, however we show that ADAMTS6 is effectively processed and active. Using siRNA, over-expression and mutagenesis, it was found ADAMTS6 inhibits and ADAMTS10 is required for focal adhesions, epithelial cell-cell junction formation, and microfibril deposition. Either knockdown of ADAMTS6, or disruption of its furin processing or catalytic sites restores focal adhesions, implicating its enzyme activity acts on targets in the focal adhesion complex. In ADAMTS10-depleted cultures, expression of syndecan-4 rescues focal adhesions and cell-cell junctions. Recombinant C-termini of ADAMTS10 and ADAMTS6, both of which induce focal adhesions, bind heparin and syndecan-4. However, cells overexpressing full-length ADAMTS6 lack heparan sulphate and focal adhesions, whilst depletion of ADAMTS6 induces a prominent glycocalyx. Thus ADAMTS10 and ADAMTS6 oppositely affect heparan sulphate-rich interfaces including focal adhesions. We previously showed that microfibril deposition requires fibronectin-induced focal adhesions, and cell-cell junctions in epithelial cultures. Here we reveal that ADAMTS6 causes a reduction in heparan sulphate-rich interfaces, and its expression is regulated by ADAMTS10.


Subject(s)
ADAMTS Proteins/metabolism , Epithelial Cells/physiology , Focal Adhesions , Intercellular Junctions , ADAMTS Proteins/genetics , DNA Mutational Analysis , Gene Expression , Gene Knockdown Techniques , Humans
4.
Cell Rep ; 7(3): 661-71, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24767991

ABSTRACT

Mitosis is a moment of exquisite vulnerability for a metazoan cell. Failure to complete mitosis accurately can lead to aneuploidy and cancer initiation. Therefore, if the exit from mitosis is delayed, normal cells are usually removed by apoptosis. However, how failure to complete mitosis activates apoptosis is still unclear. Here, we demonstrate that a phosphorylated form of the BH3-only protein Bid regulates apoptosis if mitotic exit is delayed. Bid is phosphorylated on serine 66 as cells enter mitosis, and this phosphorylation is lost during the metaphase-to-anaphase transition. Cells expressing a nonphosphorylatable version of Bid or a BH3-domain mutant were resistant to mitotic-arrest-induced apoptosis. Thus, we show that Bid phosphorylation primes cells to undergo mitochondrial apoptosis if mitotic exit is delayed. Avoidance of this mechanism may explain the selective pressure for cancer cells to undergo mitotic slippage.


Subject(s)
BH3 Interacting Domain Death Agonist Protein/metabolism , Mitochondria/metabolism , Amino Acid Sequence , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , BH3 Interacting Domain Death Agonist Protein/antagonists & inhibitors , BH3 Interacting Domain Death Agonist Protein/chemistry , Cell Cycle Checkpoints , Cell Line , HEK293 Cells , Humans , Mice , Mitosis , Molecular Sequence Data , Paclitaxel/pharmacology , Phosphopeptides/analysis , Phosphorylation , RNA, Small Interfering/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...