Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Mol Spectrosc ; 3782021 Apr.
Article in English | MEDLINE | ID: mdl-34257467

ABSTRACT

The study of the Aromatic Infrared Bands (AIBs) in astronomical environments has opened interesting spectroscopic questions on the effect of anharmonicity on the infrared (IR) spectrum of hot polycyclic aromatic hydrocarbons (PAHs) and related species in isolated conditions. The forthcoming James Webb Space Telescope will unveil unprecedented spatial and spectral details in the AIB spectrum; significant advancement is thus necessary now to model the infrared emission of PAHs, their presumed carriers, with enough detail to exploit the information content of the AIBs. This requires including anharmonicity in such models, and to do so systematically for all species included, requiring a difficult compromise between accuracy and efficiency. We performed a benchmark study to compare the performances of two methods in calculating anharmonic spectra, comparing them to available experimental data. One is a full quantum method, AnharmoniCaOs, relying on an ab initio potential, and the other relies on Molecular Dynamics simulations using a Density Functional based Tight Binding potential. The first one is found to be very accurate and detailed, but it becomes computationally very expensive for increasing temperature; the second is faster and can be used for arbitrarily high temperatures, but is less accurate. Still, its results can be used to model the evolution with temperature of isolated bands. We propose a new recipe to model anharmonic AIB emission using minimal assumptions on the general behaviour of band positions and widths with temperature, which can be defined by a small number of empirical parameters. Modelling accuracy will depend critically on these empirical parameters, allowing for an incremental improvement in model results, as better estimates become gradually available.

2.
J Phys Chem A ; 123(19): 4139-4148, 2019 May 16.
Article in English | MEDLINE | ID: mdl-31002512

ABSTRACT

Quantifying the effect of anharmonicity on the infrared spectrum of large molecules such as polycyclic aromatic hydrocarbons (PAHs) at high temperatures is the focus of a number of theoretical and experimental studies, many of them motivated by astrophysical applications. We recorded the IR spectrum of pyrene C16H10 microcrystals embedded in KBr pellets over a wide range of temperatures (14-723 K) and studied the evolution of band positions, widths, and integrated intensities with temperature. We identified jumps for some of the spectral characteristics of some bands in the 423-473 K range. These were attributed to a change of phase from crystal to molten in condensed pyrene, which appears to affect more strongly bands involving large CH motions. Empirical anharmonicity factors that quantify the linear evolution of band positions and widths with temperature for values larger than ∼150-250 K, depending on the band, were retrieved from both phases and averaged to provide recommended values for these anharmonicity factors. The derived values were found to be consistent with available gas phase data. We conclude about the relevance of the methodology to produce data that can be compared with calculated anharmonic IR spectra and provide input for models that simulate the IR emission of astro-PAHs.

3.
Proc Int Astron Union ; 15(Suppl 350): 388-389, 2019 Apr.
Article in English | MEDLINE | ID: mdl-33072171

ABSTRACT

In cosmic environments, polycyclic aromatic hydrocarbons (PAHs) strongly interact with vacuum ultraviolet (VUV) photons emitted by young stars. Trapped PAH cations ranging in size from 30 to 48 carbon atoms were irradiated by tunable synchrotron light (DESIRS beamline at SOLEIL). Their ionization and dissociation cross sections were determined and compared with TD-DFT computed photoabsorption cross sections. Evidence for radiative cooling is reported.

5.
J Chem Phys ; 149(14): 144102, 2018 Oct 14.
Article in English | MEDLINE | ID: mdl-30316271

ABSTRACT

While powerful techniques exist to accurately account for anharmonicity in vibrational molecular spectroscopy, they are computationally very expensive and cannot be routinely employed for large species and/or at non-zero vibrational temperatures. Motivated by the study of Polycyclic Aromatic Hydrocarbon (PAH) emission in space, we developed a new code, which takes into account all modes and can describe all infrared transitions including bands becoming active due to resonances as well as overtone, combination, and difference bands. In this article, we describe the methodology that was implemented and discuss how the main difficulties were overcome, so as to keep the problem tractable. Benchmarking with high-level calculations was performed on a small molecule. We carried out specific convergence tests on two prototypical PAHs, pyrene (C16H10) and coronene (C24H12), aiming at optimising tunable parameters to achieve both acceptable accuracy and computational costs for this class of molecules. We then report the results obtained at 0 K for pyrene and coronene, comparing the calculated spectra with available experimental data. The theoretical band positions were found to be significantly improved compared to harmonic density functional theory calculations. The band intensities are in reasonable agreement with experiments, the main limitation being the accuracy of the underlying calculations of the quartic force field. This is a first step toward calculating moderately high-temperature spectra of PAHs and other similarly rigid molecules using Monte Carlo sampling.

6.
Astron Astrophys ; 6062017 Oct.
Article in English | MEDLINE | ID: mdl-29151608

ABSTRACT

The carriers of the diffuse interstellar bands (DIBs) are largely unidentified molecules ubiquitously present in the interstellar medium (ISM). After decades of study, two strong and possibly three weak near-infrared DIBs have recently been attributed to the [Formula: see text] fullerene based on observational and laboratory measurements. There is great promise for the identification of the over 400 other known DIBs, as this result could provide chemical hints towards other possible carriers. In an effort to systematically study the properties of the DIB carriers, we have initiated a new large-scale observational survey: the ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES). The main objective is to build on and extend existing DIB surveys to make a major step forward in characterising the physical and chemical conditions for a statistically significant sample of interstellar lines-of-sight, with the goal to reverse-engineer key molecular properties of the DIB carriers. EDIBLES is a filler Large Programme using the Ultraviolet and Visual Echelle Spectrograph at the Very Large Telescope at Paranal, Chile. It is designed to provide an observationally unbiased view of the presence and behaviour of the DIBs towards early-spectral type stars whose lines-of-sight probe the diffuse-to-translucent ISM. Such a complete dataset will provide a deep census of the atomic and molecular content, physical conditions, chemical abundances and elemental depletion levels for each sightline. Achieving these goals requires a homogeneous set of high-quality data in terms of resolution (R ~ 70 000 - 100 000), sensitivity (S/N up to 1000 per resolution element), and spectral coverage (305-1042 nm), as well as a large sample size (100+ sightlines). In this first paper the goals, objectives and methodology of the EDIBLES programme are described and an initial assessment of the data is provided.

7.
Astrophys J ; 822(2)2016 May 10.
Article in English | MEDLINE | ID: mdl-27212712

ABSTRACT

Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 - 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.

8.
Mol Astrophys ; 2: 12-17, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26942230

ABSTRACT

A gas-phase optical spectrum of a large polycyclic aromatic hydrocarbon (PAH) cation - C78H26+- in the 410-610 nm range is presented. This large all-benzenoid PAH should be large enough to be stable with respect to photodissociation in the harsh conditions prevailing in the interstellar medium (ISM). The spectrum is obtained via multi-photon dissociation (MPD) spectroscopy of cationic C78H26 stored in the Fourier Transform Ion Cyclotron Resonance (FT-ICR) cell using the radiation from a mid-band optical parametric oscillator (OPO) laser. The experimental spectrum shows two main absorption peaks at 431 nm and 516 nm, in good agreement with a theoretical spectrum computed via time-dependent density functional theory (TD-DFT). DFT calculations indicate that the equilibrium geometry, with the absolute minimum energy, is of lowered, nonplanar C2 symmetry instead of the more symmetric planar D2h symmetry that is usually the minimum for similar PAHs of smaller size. This kind of slightly broken symmetry could produce some of the fine structure observed in some diffuse interstellar bands (DIBs). It can also favor the folding of C78H26+ fragments and ultimately the formation of fullerenes. This study opens up the possibility to identify the most promising candidates for DIBs amongst large cationic PAHs.

9.
J Chem Phys ; 141(16): 164325, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25362317

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail. Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory.

10.
J Chem Phys ; 127(1): 014107, 2007 Jul 07.
Article in English | MEDLINE | ID: mdl-17627337

ABSTRACT

The van der Waals dispersion coefficients of a set of polycyclic aromatic hydrocarbons, ranging in size from the single-cycle benzene to circumovalene (C(66)H(20)), are calculated with a real-time propagation approach to time-dependent density functional theory (TDDFT). In the nonretarded regime, the Casimir-Polder integral is employed to obtain C(6), once the dynamic polarizabilities have been computed at imaginary frequencies with TDDFT. On the other hand, the numerical coefficient that characterizes the fully retarded regime is obtained from the static polarizabilities. This ab initio strategy has favorable scaling with the size of the system--as demonstrated by the size of the reported molecules--and can be easily extended to obtain higher order van der Waals coefficients.

SELECTION OF CITATIONS
SEARCH DETAIL
...