Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Imaging ; 10(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38786560

ABSTRACT

Puerto de Cajas serves as a vital high-altitude passage in Ecuador, connecting the coastal region to the city of Cuenca. The stability of this rocky massif is carefully managed through the assessment of blocks and discontinuities, ensuring safe travel. This study presents a novel approach, employing rapid and cost-effective methods to evaluate an unexplored area within the protected expanse of Cajas. Using terrestrial photogrammetry and strategically positioned geomechanical stations along the slopes, we generated a detailed point cloud capturing elusive terrain features. We have used terrestrial photogrammetry for digitalization of the slope. Validation of the collected data was achieved by comparing directional data from Cloud Compare software with manual readings using a digital compass integrated in a phone at control points. The analysis encompasses three slopes, employing the SMR, Q-slope, and kinematic methodologies. Results from the SMR system closely align with kinematic analysis, indicating satisfactory slope quality. Nonetheless, continued vigilance in stability control remains imperative for ensuring road safety and preserving the site's integrity. Moreover, this research lays the groundwork for the creation of a publicly accessible 3D repository, enhancing visualization capabilities through Google Virtual Reality. This initiative not only aids in replicating the findings but also facilitates access to an augmented reality environment, thereby fostering collaborative research endeavors.

2.
Plants (Basel) ; 12(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37765344

ABSTRACT

Modeling phenological phases in a Mediterranean environment often implies tangible challenges to reconstructing regional trends over heterogenous areas using limited and scattered observations. The present investigation aimed to project phenological phases (i.e., sprouting, blooming, and pit hardening) for early and mid-late olive cultivars in the Mediterranean, comparing two phenological modeling approaches. Phenoflex is a rather integrated but data-demanding model, while a combined model of chill and anti-chill days and growing degree days (CAC_GDD) offers a more parsimonious and general approach in terms of data requirements for parameterization. We gathered phenological observations from nine experimental sites in Italy and temperature timeseries from the European Centre for Medium-Range Weather Forecasts, Reanalysis v5. The best performances of the CAC_GDD (RMSE: 4 days) and PhenoFlex models (RMSE: 5-9.5 days) were identified for the blooming and sprouting phases of mid-late cultivars, respectively. The CAC_GDD model was better suited to our experimental conditions for projecting pit hardening and blooming dates (correlation: 0.80 and 0.70, normalized RMSE: 0.6 and 0.8, normalized standard deviation: 0.9 and 1.0). The optimization of the principal parameters confirmed that the mid-late cultivars were more adaptable to thermal variability. The spatial distribution illustrated the near synchrony of blooming dates between the early and mid-late cultivars compared to other phases.

3.
Cells ; 10(6)2021 06 07.
Article in English | MEDLINE | ID: mdl-34200247

ABSTRACT

Tissue homeostasis mainly depends on the activity of stem cells to replace damaged elements and restore tissue functions. Within this context, mesenchymal stem cells and fibroblasts are essential for maintaining tissue homeostasis in skin, in particular in the dermis. Modifications in collagen fibers are able to affect stem cell features. Skin properties can be significantly reduced after injuries or with aging, and stem cell niches, mainly comprising extracellular matrix (ECM), may be compromised. To this end, specific molecules can be administrated to prevent the aging process induced by UV exposure in the attempt to maintain a youngness phenotype. NanoPCL-M is a novel nanodevice able to control delivery of Mediterranean plant myrtle (Myrtus communis L.) extracts. In particular, we previously described that myrtle extracts, rich in bioactive molecules and nutraceuticals, were able to counteract senescence in adipose derived stem cells. In this study, we analyzed the effect of NanoPCL-M on skin stem cells (SSCs) and dermal fibroblasts in a dynamic cell culture model in order to prevent the effects of UV-induced senescence on proliferation and collagen depot. The BrdU assay results highlight the significantly positive effect of NanoPCL-M on the proliferation of both fibroblasts and SSCs. Our results demonstrate that-M is able to preserve SSCs features and collagen depot after UV-induced senescence, suggesting their capability to retain a young phenotype.


Subject(s)
Adipose Tissue/metabolism , Cellular Senescence/drug effects , Myrtus/chemistry , Nanofibers/chemistry , Phytochemicals , Plant Extracts , Stem Cells/metabolism , Fibroblasts/metabolism , Humans , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
4.
Plants (Basel) ; 10(2)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33562119

ABSTRACT

Within the myrtle (Myrtus communis L.) species, different genotypes may produce dark-blue berries or white berries depending on the peel color upon ripening. One dark-blue cultivar and one white myrtle cultivar were used to study the molecular mechanisms underlying flavonoid biosynthesis. The relative expression levels of common (PAL, CHS, CHI, DFR and LDOX) and specific (FLS, ANR, LAR and UFGT) flavonoid genes were analyzed during fruit development by means of quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, the anthocyanin content was determined, and it showed an increase with the ripening of the berries of the dark-blue cultivar. The results showed an increased transcript abundance of PAL, CHI, DFR, LDOX and UFGT gene expression in the dark-blue cultivar compared to the white one, as well as a strong positive correlation between the changes in gene expression and anthocyanin accumulation. The transcript levels of UFGT showed sharp increases at 150 and 180 days after full blooming (DAF) in the dark-blue cultivar, which corresponded with anthocyanin accumulation. However, ripening seemed to modulate the expression of genes implicated in flavonols (i.e., FLS) and flavan-3-ols (i.e., LAR and ANR) in different manners. However, whereas FLS transcript accumulation increased at the end of the ripening period in the dark-blue cultivar, LAR and ANR gene expression decreased in both cultivars.

5.
J Sci Food Agric ; 101(10): 4229-4240, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33426638

ABSTRACT

BACKGROUND: In the postharvest handling of horticultural commodities, plant extracts with fungicidal activity are a valid alternative to synthetic fungicides. The fungicidal activity of myrtle leaf extracts from eight cultivars was studied in vitro against Penicillium digitatum, Penicillium italicum, and Penicillium expansum and on artificially inoculated mandarins with green and blue molds during storage for 12 days at 20 °C and 90% RH. RESULTS: Hydroxybenzoic acids, hydrolysable tannins, and flavonols were identified by high-performance liquid chromatography (HPLC). Despite sharing the same phenolic profile, extracts of eight myrtle cultivars significantly differed in the concentration of phenolics. Hydrolysable tannins are the principal subclass representing nearly 44.9% of the total polyphenols, whereas myricitrin was the most abundant flavonol in all cultivars. Myrtle extracts strongly inhibited conidial germination of the pathogens tested, although the greatest efficacy was observed against P. digitatum. At a concentration of 20 g L-1 , all the extracts completely inhibited fungi growth; only 'Angela', 'Tonina' and 'Grazia' extracts were effective at lower concentrations (15 g L-1 ). On inoculated fruit, myrtle extracts significantly controlled rot development. As a preventive treatment, 'Ilaria' and 'Maria Rita' extracts significantly reduced the rate of fruit with green mold decay lesions. When applied as a curative treatment, all the exacts decreased the incidence of decay. Against P. italicum, all the extracts applied as preventive treatments controlled decay effectively, while as curative treatment some of the extracts were not effective. All the extracts reduced the size of the infected areas. CONCLUSION: The results propose myrtle extracts as a possible natural alternative to synthetic fungicides. © 2021 Society of Chemical Industry.


Subject(s)
Citrus/microbiology , Food Preservation/methods , Food Preservatives/pharmacology , Fungicides, Industrial/pharmacology , Myrtus/chemistry , Penicillium/drug effects , Plant Diseases/prevention & control , Plant Extracts/pharmacology , Food Preservation/instrumentation , Food Preservatives/chemistry , Food Storage , Fruit/microbiology , Penicillium/classification , Penicillium/growth & development , Plant Diseases/microbiology , Plant Extracts/chemistry , Plant Leaves/chemistry
6.
Int J Phytoremediation ; 23(5): 548-558, 2021.
Article in English | MEDLINE | ID: mdl-33100025

ABSTRACT

Atriplex halimus grows in humid and saline warm regions of Mediterranean area showing high adaptability but less information is available on resistance to chilling temperatures.Potted plants of five clones (MAR1, GIO1, SAN3, PAL1, and FAN3) were cultivated during 30 months in four localities (Oristano, Tempio, Sassari, and Villasor). Every 6 months, leaves, stems and roots of plants were the object of mineral composition analysis (N, P, Na, K, Ca, Mg, Cu, Zn, Fe, and Mn). During the experiment, air temperature was recorded and hour degrees sums calculated for thresholds ranging from 0 °C to 35 °C.Leaves showed highest content of all elements, with the exception of iron.Plants showed ability to accumulate mineral elements in a synergic or antagonistic way. Accumulation of chilling hour degrees positively correlated with calcium in leaves and stems, and with manganese in the whole plant. Sodium in leaves, instead, was favored by high temperatures, which are unfavorable to nitrogen accumulation in roots. Magnesium accumulation in leaves and roots enhanced with moderately high temperatures. Two of the tested clones (GIO1 and SAN3) showed a relative low adaptability to the coldest conditions. The other three clones provided better performances with the best behavior of PAL1.


Subject(s)
Atriplex , Biodegradation, Environmental , Genotype , Minerals , Plant Leaves , Plant Roots
7.
Cells ; 9(12)2020 11 24.
Article in English | MEDLINE | ID: mdl-33255167

ABSTRACT

Natural cosmetic products have recently re-emerged as a novel tool able to counteract skin aging and skin related damages. In addition, recently achieved progress in nanomedicine opens a novel approach yielding from combination of modern nanotechnology with traditional treatment for innovative pharmacotherapeutics. In the present study, we investigated the antiaging effect of a pretreatment with Myrtus communis natural extract combined with a polycaprolactone nanofibrous scaffold (NanoPCL-M) on skin cell populations exposed to UV. We set up a novel model of skin on a bioreactor mimicking a crosstalk between keratinocytes, stem cells and fibroblasts, as in skin. Beta-galactosidase assay, indicating the amount of senescent cells, and viability assay, revealed that fibroblasts and stem cells pretreated with NanoPCL-M and then exposed to UV are superimposable to control cells, untreated and unexposed to UV damage. On the other hand, cells only exposed to UV stress, without NanoPCL-M pretreatment, exhibited a significantly higher yield of senescent elements. Keratinocyte-based 3D structures appeared disjointed after UV-stress, as compared to NanoPCL-M pretreated samples. Gene expression analysis performed on different senescence associated genes, revealed the activation of a molecular program of rejuvenation in stem cells pretreated with NanoPCL-M and then exposed to UV. Altogether, our results highlight a future translational application of NanoPCL-M to prevent skin aging.


Subject(s)
Cellular Senescence/drug effects , Nanofibers/chemistry , Plant Extracts/pharmacology , Skin/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Fibroblasts/drug effects , Gene Expression/drug effects , Humans , Keratinocytes/drug effects , Myrtus/chemistry , Polyesters/chemistry , Skin Aging/drug effects , Stem Cells/drug effects , Ultraviolet Rays/adverse effects
8.
Plants (Basel) ; 9(10)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003352

ABSTRACT

A population of 52 genotypes of Myrtle (Myrtus communis L.), selected in the framework of a domestication program and growing in the same collection field at Oristano (Central Western Sardinia, 39°54' N 8°35' E), was analyzed by GC/MS for leaf essential oil composition. The chemical composition of essential oils was quite variable with a number of compounds ranging from 31 to 78 depending on cultivar. One hundred and eighteen compounds were globally identified in the various genotypes. However, α-pinene, limonene, 1,8-cineole, α-terpineol, and linalool always resulted as main components with few differences among samples. Minor compounds have been the determining factors in differentiating or associating genotypes in the outputs of a principal component analysis (PCA), where the results of another analysis of fruit essential oils of the same genotypes were also jointly used. Genotypes were discriminated according to mother plant characterization or ecological variables, such as site altitude, soil nature, and presence or absence of calcareous soils in the substrate of the localities of origin.

9.
Biomed Res Int ; 2019: 5641034, 2019.
Article in English | MEDLINE | ID: mdl-31309107

ABSTRACT

Nutraceuticals present in food are molecules able to exert biological activity for the prevention and treatment of various diseases, in form of pharmaceutical preparations, such as capsules, cream, or pills. Myrtus communis L. is a spontaneous Mediterranean evergreen shrub, widely known for the liqueur obtained from its berries rich in phytochemicals such as tannins and flavonoids. In the present study, we aimed to evaluate the properties of myrtle byproducts, residual of the industrial liqueur processing, in Adipose-derived stem cells (ADSCs) induced at oxidative stress by in vitro H2O2 treatment. Cells were exposed for 12-24 and 48h at treatment with extracts and then senescence-induced. ROS production was then determined. The real-time PCR was performed to evaluate the expression of inflammatory cytokines and sirtuin-dependent epigenetic changes, as well the modifications in terms of stem cell pluripotency. The ß-galactosidase assay was conducted to analyze stem cell senescence after treatment. Our results show that industrial myrtle byproducts retain a high antioxidant and antisenescence activity, protecting cells from oxidative stress damages. The results obtained suggest that residues from myrtle liqueur production could be used as resource in formulation of food supplements or pharmaceutical preparations with antioxidant, antiaging, and anti-inflammatory activity.


Subject(s)
Myrtus/chemistry , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Stem Cells/drug effects , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Cytokines/metabolism , Female , Flavonoids/pharmacology , Humans , Inflammation/drug therapy , Inflammation/metabolism , Male , Middle Aged , Reactive Oxygen Species/metabolism , Stem Cells/metabolism , Tannins/pharmacology , beta-Galactosidase/metabolism
10.
Molecules ; 24(8)2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30999678

ABSTRACT

Inflammatory response represents one of the main mechanisms of healing and tissue function restoration. On the other hand, chronic inflammation leads to excessive secretion of pro-inflammatory cytokines involved in the onset of several diseases. Oxidative stress condition may contribute in worsening inflammatory state fall, increasing reactive oxygen species (ROS) production and cytokines release. Polyphenols can counteract inflammation and oxidative stress, modulating the release of toxic molecules and interacting with physiological defenses, such as cytochromes p450 enzymes. In this paper, we aimed at evaluating the anti-inflammatory properties of different concentrations of Myrtus communis L. pulp and seeds extracts, derived from liquor industrial production, on human fibroblasts. We determined ROS production after oxidative stress induction by H2O2 treatment, and the gene expression of different proinflammatory cytokines. We also analyzed the expression of CYP3A4 and CYP27B1 genes, in order to evaluate the capability of Myrtus polyphenols to influence the metabolic regulation of other molecules, including drugs, ROS, and vitamin D. Our results showed that Myrtus extracts exert a synergic effect with vitamin D in reducing inflammation and ROS production, protecting cells from oxidative stress damages. Moreover, the extracts modulate CYPs expression, preventing chronic inflammation and suggesting their use in development of new therapeutic formulations.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Cytochrome P-450 Enzyme System/metabolism , Myrtus/chemistry , Polyphenols , Vitamin D , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Antioxidants/pharmacology , Cell Line , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Polyphenols/chemistry , Polyphenols/pharmacokinetics , Polyphenols/pharmacology , Vitamin D/chemistry , Vitamin D/pharmacokinetics , Vitamin D/pharmacology
11.
Food Chem ; 271: 753-761, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30236741

ABSTRACT

The oxidative stability of myrtle hydroalcoholic extracts was measured, over storage time, with the EPR spin trapping method under forced ageing conditions. The extracts were prepared with 150 and 300 g l-1 of berries and extraction media with ethanol ranging from 60 to 90%. Two radicals were detected: the PBN-1-hydroxyethyl adduct and the tert-butyl aminoxyl radical. A dimensionless parameter (Ω) calculated on the basis of the lag time, the rate of formation and concentration of the radical species was used to estimate the extracts' oxidative stability. Ω was strongly influenced by the extraction medium, being lower in extracts with ethanol 60%, and by the time of storage. An inverse correlation was calculated between Ω and ellagic acid concentration, thus suggesting the role of this phenolic acid in the antioxidant properties of the extracts. The radical scavenging activity of the extracts against the hydroxyl radical was also measured.


Subject(s)
Myrtus/chemistry , Spin Trapping/methods , Electron Spin Resonance Spectroscopy , Free Radicals , Hydroxyl Radical , Myrtus/metabolism , Nitrogen Oxides , Oxidative Stress , Plant Extracts , Spin Labels
12.
Molecules ; 23(10)2018 Sep 29.
Article in English | MEDLINE | ID: mdl-30274291

ABSTRACT

Myrtle (Myrtus communis L.) is a shrub spontaneously growing in the Mediterranean area. The leaf and fruit content of essential oils and phenolic compounds justify the wide use of the plant as medicinal and aromatic. Because of overexploitation of wild plants, a domestication process is in progress in different regions and the influence of the genotype variability on the chemical composition of fruit essential oils may be useful to breeding programs. Consequently, the analysis performed on a selected group of candidate clones growing in the same field collection in Sardinia is the object of this report. Forty-seven selections provided fully ripe fruits for essential oil extraction by hydrodistillation and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Only five candidate clones showed white fruits. The highest yield of essential oil was observed in the LAC31 genotype with 0.55 g·kg-1, while the samples BOS1, MON5, RUM4, RUM10, V4 and V8 showed values above 0.20 g·kg-1 and most of the genotypes under 0.10 g·kg-1. Geranyl acetate was the compound with the highest relative abundance. The second compound for relative abundance was the 1,8-cineole. Other compounds with high relative abundance were α-terpinyl acetate, methyleugenol, linalool, α-terpineol, ß-caryophyllene, α-humulene, Trans-caryophyllene oxide, and humulene epoxide II.


Subject(s)
Myrtus/chemistry , Oils, Volatile/analysis , Phenols/analysis , Plant Extracts/analysis , Terpenes/analysis , Fruit/chemistry , Fruit/genetics , Genotype , Myrtus/genetics , Oils, Volatile/chemistry , Phenols/chemistry , Phenols/isolation & purification , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Leaves/genetics , Terpenes/chemistry , Terpenes/isolation & purification
13.
Int J Phytoremediation ; 20(3): 249-255, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29053341

ABSTRACT

Atriplex nummularia is a halophyte widely employed to recover saline soils and was used as a model to evaluate the water potentials in the soil-plant system under drought and salt stresses. Potted plants grown under 70 and 37% of field capacity irrigated with solutions of NaCl and of a mixture of NaCl, KCl, MgCl2 and CaCl2 reproducing six electrical conductivity (EC): 0, 5, 10, 20, 30, and 40 dS m-1. After 100 days, total water (Ψw, plant) and osmotic (Ψo, plant) potentials at predawn and midday and Ψo, soil, matric potential (Ψm, soil) and Ψw, soil were determined. The type of ion in the irrigation water did not influence the soil potential, but was altered by EC. The soil Ψo component was the largest contributor to Ψw, soil. Atriplex is surviving ECs close to 40 dS m-1 due to the decrease in the Ψw. The plants reached a Ψw of approximately -8 MPa. The water potentials determined for different moisture levels, EC levels and salt types showed huge importance for the management of this species in semiarid regions and can be used to recover salt affected soils.


Subject(s)
Atriplex , Biodegradation, Environmental , Droughts , Salt Stress , Salt-Tolerant Plants , Soil , Water
14.
Int J Biometeorol ; 60(5): 677-86, 2016 May.
Article in English | MEDLINE | ID: mdl-26353974

ABSTRACT

A very effective tool to combat desertification is revegetation. Promising species for this purpose are the evergreen shrubs of the genus Atriplex. The objective of the research was to study the growing responses of Atriplex halimus under different thermal regimes and to evaluate the biomass accumulation of selected clones. The test was carried out in four sites of Sardinia Island (Italy) characterized by different latitude, altitude and air temperature trends along the year. In every site, potted plants of five clones of A. halimus were compared for biomass production as measured by linear growth of plants (central axis and secondary shoots), as well as by dry weight of leaves, shoots and roots per plant. Correlations between sums of hour-degrees under or above the thresholds of critical air temperatures, comprised between 0 and 35 °C, and the plant growth indicators were analysed. Differences among the five clones, with regard to the influence of low temperatures on plant growth and on the biomass production were evaluated. Among five tested clones, GIO1 and SAN3 resulted more sensitive to low temperatures. Clones MAR1, PAL1 and FAN3 resulted less sensitive to low temperatures and in the site characterized by the lowest minimum temperatures also have shown greater adaptability and thus biomass growth in the observed period. The clone PAL1 showed a lower shoot/root biomass ratio as adaptation to cold temperature, and the clone FAN3, the opposite behaviour and a general preference to temperate thermal regimes.


Subject(s)
Atriplex/growth & development , Atriplex/genetics , Biomass , Genotype , Italy , Plant Leaves/growth & development , Plant Roots/growth & development , Plant Shoots/growth & development , Temperature
15.
Electron. j. biotechnol ; 16(6): 7-7, Nov. 2013. ilus, tab
Article in English | LILACS | ID: lil-696548

ABSTRACT

Background: The myrtle (Myrtus communis) is a common shrub widespread in the Mediterranean Basin. Its fruit and leaves exhibit antioxidant, antibacterial and antifungal properties, and are used for their content of essential oils and for their medicinal properties, but most commonly as an ingredient in locally made liquor. The uncontrolled exploitation of natural stands has reduced both the species' geographical coverage and the size of individual populations. The selection of genotypes for controlled cultivation requires a characterization of the genetic diversity present both within and between populations. Results: Genotypic variation was evaluated using ISSR profiling and genetic diversity characterized using standard population genetics approaches. Two major clusters were identified: one capturing all the candidate cultivars selected from various Sardinian localities, and the other wild individuals collected from Asinara, Corsica and Surigheddu. A moderate level of gene flow between the Sardinian and Corsican populations was identified. Discriminant analysis of principal components revealed a level of separation among the wild populations, confirming the population structure identified by the clustering methods. Conclusions: The wild accessions were well differentiated from the candidate cultivars. The level of genetic variability was high. The genetic data were compatible with the notion that myrtle has a mixed pollination system, including both out-pollination by insects and self-pollination. The candidate cultivars are suggested to represent an appropriate basis for directed breeding.


Subject(s)
Genetic Variation , Myrtus/genetics , Microsatellite Repeats , Genetic Structures , Genetics, Population , Genotype
16.
J Sci Food Agric ; 93(1): 37-44, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-22589199

ABSTRACT

BACKGROUND: The effect of maturation and senescence on the chemical composition of two myrtle cultivars was studied in mature, overripe and cold-stored fruits in order to find the most appropriate harvesting period and best storage technology for industrial purposes. RESULTS: After cold storage at 10 °C for 15 days, berry weight loss ranged from 12.5 to 18.4%, with the highest losses in less mature fruits. Titratable acidity decreased during maturation and cold storage in both cultivars. Reducing and total sugars increased during maturation. Anthocyanin concentration increased during maturation but decreased in overripe berries. The major organic acids in myrtle fruits were quinic, malic and gluconic acids. In fresh and cold-stored fruits, malic acid rose to 3 g kg(-1) and decreased thereafter. Quinic acid peaked at 90 or 120 days after bloom and decreased thereafter to reach low concentrations in mature fruits. CONCLUSION: Cold storage for 15 days at 10 °C does not affect myrtle fruit quality for liqueur production. Anthocyanin concentration is the best indicator of harvest time for industrial purposes. Gluconic acid concentration is high in mature, overripe and cold-stored berries. This parameter can be used as a marker of the onset of fruit senescence.


Subject(s)
Anthocyanins/metabolism , Antioxidants/metabolism , Carboxylic Acids/metabolism , Cold Temperature , Food Storage/methods , Fruit/metabolism , Myrtus/metabolism , Agriculture/methods , Alcoholic Beverages , Dietary Sucrose/metabolism , Fruit/growth & development , Gluconates/metabolism , Humans , Malates/metabolism , Phenols/metabolism , Quinic Acid/metabolism
17.
Funct Plant Biol ; 40(5): 466-474, 2013 May.
Article in English | MEDLINE | ID: mdl-32481123

ABSTRACT

Atriplex halimus L. is known in the Mediterranean basin and along the coastal areas of Sardinia for its adaptability to salinity, although less information is available on the resistance of this species to water stress in absence of salinity. The effect of water stress on growth and water utilisation was investigated in two Atriplex species: A. halimus originating of south Sardinian island and the exotic species Atriplex nummularia Lindl., originating in Australia and widely used in land restoration of arid areas. Water stress was applied to young plants growing in 20L pots with a sufficient water reserve to store a potentially sufficient water reserve to maintain substrate near to field capacity (30%) between irrigations. Watering was at 70% (control) or 40% (stress) of field capacity. In order to simulate the grazing by livestock, four plant biomass cuttings were conducted at times T0, T1, T2 and T3, corresponding to one cutting at the end of well watered phase (T0) before water stress induction, two cuttings after cycles of 5 weeks each during full summer (T1) and late summer (T2) and one cutting during autumn (T3). All plants remained alive until the end of treatment although growth was strongly reduced. Leaf dry weight (DW) and water use efficiency (WUE) were determined for all cuttings; relative water content (RWC), turgid weight:dry weight ratio (TW:DW), water potential (Ψw), osmotic potential (Ψs), CO2 assimilation, osmotic adjustment (OA), abscisic acid (ABA) and sugar accumulation were determined for the late summer cutting at T2. Water stress induced a decrease in DW, RWC, Ψw, Ψs, TW:DW and CO2 assimilation for both species, but an increase in WUE expressed in terms of dry matter production and a high accumulation of ABA and total sugars mainly for A. halimus. This suggests a more developed adaptive mechanism in this selection. Indeed, the clone was selected from the southern part of the island, where natural populations of saltbush are more exposed to abiotic stresses, mainly the water stress generated not by salinity. A. nummularia showed a greater OA and a positive net solute accumulation as than A. halimus, suggesting that water stress resistance in A. halimus is linked to a higher WUE rather than a greater osmotic adjustment.

18.
J Food Prot ; 71(5): 967-72, 2008 May.
Article in English | MEDLINE | ID: mdl-18522031

ABSTRACT

The residue levels of fludioxonil (FLU) were determined in pear cultivars Precoce di Fiorano, Coscia, and Spadona estiva after a 2-min dip in an aqueous mixture of FLU containing 300 or 100 mg/liter of active ingredient at 20 or 50 degrees C and after 12 days at 17 degrees C and 80% relative humidity (simulated shelf life conditions). The accumulation trend of FLU residues was determined in 'Precoce di Fiorano' pears after treatments with 25, 50, 100, or 200 mg/liter of active ingredient at 20 or 50 degrees C for 2 min or at 60 degrees C for 1 min. The efficacy of heat treatments with water and FLU was investigated on artificially inoculated 'Precoce di Fiorano', 'Coscia', and 'Spadona estiva' pears for the control of postharvest blue mold and gray mold caused by Penicillium expansum and Botrytis cinerea, respectively. Treatment with 300 mg/liter FLU at 20 degrees C resulted in residue levels similar to those from treatment with 100 mg/liter FLU at 50 degrees C in 'Coscia' fruit but in significantly lower residues in 'Precoce di Fiorano' and 'Spadona estiva' pears. Post-shelf life residues decreased in all cultivars, especially in 'Spadona estiva' pears treated with 300 mg/liter FLU at 20 degrees C. Residue levels of FLU in 'Precoce di Fiorano' pears treated at 20, 50, or 60 degrees C were correlated with fungicide dosage. When an equal rate was used, treatment at 50 degrees C resulted in a higher and a notably higher FLU deposition than that found under treatment at 60 and 20 degrees C, respectively. The in vitro tests showed that both pathogens were very sensitive to FLU, with MICs averaging 0.05 and 0.1 mg/liter for B. cinerea and P. expansum isolates, respectively. The 50% effective concentration ranged between 0.01 and 0.05 mg/liter for B. cinerea and between 0.05 and 0.1 mg/liter for P. expansum. In the in vivo trials, hot water treatment effectively reduced the incidence of both diseases during the first 4 to 8 days, depending on cultivar, dip temperature, and type of inoculum. However, as the incubation time proceeded, decay reduction was generally lower and the benefit of heat treatments was notably reduced or almost lost. In contrast, all treatments with FLU had a long-lasting effect. Treatments with heated FLU were more effective than those with unheated FLU; reduced concentrations of active ingredient were required to achieve a comparable control of blue and gray mold decay in these pears.


Subject(s)
Botrytis/growth & development , Dioxoles/pharmacology , Drug Residues/analysis , Food Contamination/analysis , Food Preservation/methods , Penicillium/growth & development , Pyrroles/pharmacology , Pyrus , Botrytis/drug effects , Colony Count, Microbial , Dose-Response Relationship, Drug , Hot Temperature , Humidity , Penicillium/drug effects , Pyrus/chemistry , Pyrus/microbiology , Time Factors
19.
Ann Bot ; 98(5): 935-42, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16935868

ABSTRACT

BACKGROUND AND AIMS: Olive cultivars and their wild relatives (oleasters) represent two botanical varieties of Olea europaea subsp. europaea (respectively europaea and sylvestris). Olive cultivars have undergone human selection and their area of diffusion overlaps that of oleasters. Populations of genuine wild olives seem restricted to isolated areas of Mediterranean forests, while most other wild-looking forms of olive may include feral forms that escaped cultivation. METHODS: The genetic structure of wild and cultivated olive tree populations was evaluated by amplified fragment length polymorphism (AFLP) markers at a microscale level in one continental and two insular Italian regions. KEY RESULTS: The observed patterns of genetic variation were able to distinguish wild from cultivated populations and continental from insular regions. Island oleasters were highly similar to each other and were clearly distinguishable from those of continental regions. Ancient cultivated material from one island clustered with the wild plants, while the old plants from the continental region clustered with the cultivated group. CONCLUSIONS: On the basis of these results, we can assume that olive trees have undergone a different selection/domestication process in the insular and mainland regions. The degree of differentiation between oleasters and cultivated trees on the islands suggests that all cultivars have been introduced into these regions from the outside, while the Umbrian cultivars have originated either by selection from local oleasters or by direct introduction from other regions.


Subject(s)
Genes, Plant , Olea/genetics , Mediterranean Region
SELECTION OF CITATIONS
SEARCH DETAIL
...