Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 20(9): 1225-1235, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28714954

ABSTRACT

Hexanucleotide repeat expansions represent the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, though the mechanisms by which such expansions cause neurodegeneration are poorly understood. We report elevated levels of DNA-RNA hybrids (R-loops) and double strand breaks in rat neurons, human cells and C9orf72 ALS patient spinal cord tissues. Accumulation of endogenous DNA damage is concomitant with defective ATM-mediated DNA repair signaling and accumulation of protein-linked DNA breaks. We reveal that defective ATM-mediated DNA repair is a consequence of P62 accumulation, which impairs H2A ubiquitylation and perturbs ATM signaling. Virus-mediated expression of C9orf72-related RNA and dipeptide repeats in the mouse central nervous system increases double strand breaks and ATM defects and triggers neurodegeneration. These findings identify R-loops, double strand breaks and defective ATM-mediated repair as pathological consequences of C9orf72 expansions and suggest that C9orf72-linked neurodegeneration is driven at least partly by genomic instability.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Chromosome Breakage , DNA Repair/physiology , DNA Repeat Expansion/physiology , Proteins/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , C9orf72 Protein , Cells, Cultured , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Proteins/metabolism , Random Allocation , Rats , Spinal Cord/metabolism , Spinal Cord/pathology
2.
Hum Mol Genet ; 26(6): 1133-1145, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28158451

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease, characterised by progressive failure of the neuromuscular system. A (G4C2)n repeat expansion in C9ORF72 is the most common genetic cause of ALS and frontotemporal dementia (FTD). To date, the balance of evidence indicates that the (G4C2)n repeat causes toxicity and neurodegeneration via a gain-of-toxic function mechanism; either through direct RNA toxicity or through the production of toxic aggregating dipeptide repeat proteins. Here, we have generated a stable and isogenic motor neuronal NSC34 cell model with inducible expression of a (G4C2)102 repeat, to investigate the gain-of-toxic function mechanisms. The expression of the (G4C2)102 repeat produces RNA foci and also undergoes RAN translation. In addition, the expression of the (G4C2)102 repeat shows cellular toxicity. Through comparison of transcriptomic data from the cellular model with laser-captured spinal motor neurons from C9ORF72-ALS cases, we also demonstrate that the PI3K/Akt cell survival signalling pathway is dysregulated in both systems. Furthermore, partial knockdown of Pten rescues the toxicity observed in the NSC34 (G4C2)102 cellular gain-of-toxic function model of C9ORF72-ALS. Our data indicate that PTEN may provide a potential therapeutic target to ameliorate toxic effects of the (G4C2)n repeat.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , PTEN Phosphohydrolase/genetics , Proteins/genetics , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein , Cell Line , Cell Survival , Frontotemporal Dementia/pathology , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Motor Neurons/metabolism , Motor Neurons/pathology , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA/genetics
3.
Hum Gene Ther ; 25(7): 575-86, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24845847

ABSTRACT

Spinal muscular atrophy (SMA) is a severe autosomal recessive disease caused by a genetic defect in the survival motor neuron 1 (SMN1) gene, which encodes SMN, a protein widely expressed in all eukaryotic cells. Depletion of the SMN protein causes muscle weakness and progressive loss of movement in SMA patients. The field of gene therapy has made major advances over the past decade, and gene delivery to the central nervous system (CNS) by in vivo or ex vivo techniques is a rapidly emerging field in neuroscience. Despite Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis being among the most common neurodegenerative diseases in humans and attractive targets for treatment development, their multifactorial origin and complicated genetics make them less amenable to gene therapy. Monogenic disorders resulting from modifications in a single gene, such as SMA, prove more favorable and have been at the fore of this evolution of potential gene therapies, and results to date have been promising at least. With the estimated number of monogenic diseases standing in the thousands, elucidating a therapeutic target for one could have major implications for many more. Recent progress has brought about the commercialization of the first gene therapies for diseases, such as pancreatitis in the form of Glybera, with the potential for other monogenic disease therapies to follow suit. While much research has been carried out, there are many limiting factors that can halt or impede translation of therapies from the bench to the clinic. This review will look at both recent advances and encountered impediments in terms of SMA and endeavor to highlight the promising results that may be applicable to various associated diseases and also discuss the potential to overcome present limitations.


Subject(s)
Genetic Diseases, Inborn/therapy , Genetic Therapy/methods , Muscular Atrophy, Spinal/therapy , Mutation , Survival of Motor Neuron 1 Protein/genetics , Animals , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Genetic Diseases, Inborn/physiopathology , Genetic Therapy/trends , Humans , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...