Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Genet Med ; 26(6): 101105, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38430071

ABSTRACT

PURPOSE: To describe a recessively inherited cerebral small vessel disease, caused by loss-of-function variants in Nitrilase1 (NIT1). METHODS: We performed exome sequencing, brain magnetic resonance imaging, neuropathology, electron microscopy, western blotting, and transcriptomic and metabolic analyses in 7 NIT1-small vessel disease patients from 5 unrelated pedigrees. RESULTS: The first identified patients were 3 siblings, compound heterozygous for the NIT1 c.727C>T; (p.Arg243Trp) variant and the NIT1 c.198_199del; p.(Ala68∗) variant. The 4 additional patients were single cases from 4 unrelated pedigrees and were all homozygous for the NIT1 c.727C>T; p.(Arg243Trp) variant. Patients presented in mid-adulthood with movement disorders. All patients had striking abnormalities on brain magnetic resonance imaging, with numerous and massively dilated basal ganglia perivascular spaces. Three patients had non-lobar intracerebral hemorrhage between age 45 and 60, which was fatal in 2 cases. Western blotting on patient fibroblasts showed absence of NIT1 protein, and metabolic analysis in urine confirmed loss of NIT1 enzymatic function. Brain autopsy revealed large electron-dense deposits in the vessel walls of small and medium sized cerebral arteries. CONCLUSION: NIT1-small vessel disease is a novel, autosomal recessively inherited cerebral small vessel disease characterized by a triad of movement disorders, massively dilated basal ganglia perivascular spaces, and intracerebral hemorrhage.


Subject(s)
Cerebral Hemorrhage , Cerebral Small Vessel Diseases , Movement Disorders , Pedigree , Humans , Female , Male , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/pathology , Cerebral Small Vessel Diseases/diagnostic imaging , Middle Aged , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/diagnostic imaging , Movement Disorders/genetics , Movement Disorders/pathology , Movement Disorders/diagnostic imaging , Magnetic Resonance Imaging , Alleles , Adult , Aged , Glymphatic System/pathology , Glymphatic System/diagnostic imaging , Exome Sequencing , Brain/pathology , Brain/diagnostic imaging , Aminohydrolases/genetics
2.
Am J Transplant ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38215981

ABSTRACT

Renal ex vivo normothermic machine perfusion (NMP) is under development as an assessment tool for high-risk kidney grafts and as a means of achieving more physiologically accurate organ preservation. On-going hemolysis has been reported during NMP, as this technique relies on red blood cells for oxygen delivery. In this study, we confirm the occurrence of progressive hemolysis during 6-hour kidney NMP. NMP-associated erythrostasis in the glomeruli and in peri-glomerular vascular networks points to an interaction between the red blood cells and the graft. Continuous hemolysis resulted in prooxidative changes in the perfusate, which could be quenched by addition of fresh frozen plasma. In a cell-based system, this hemolysis induced redox stress and exhibited toxic effects at high concentrations. These findings highlight the need for a more refined oxygen carrier in the context of renal NMP.

3.
Invest Ophthalmol Vis Sci ; 65(1): 42, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38271187

ABSTRACT

Purpose: Pigmentation in uveal melanoma is associated with increased malignancy and is known as a barrier for photodynamic therapy. We investigated the role of pigmentation in tumor behavior and the response to light-activated Belzupacap sarotalocan (Bel-sar) treatment in a pigmented (wild type) and nonpigmented (tyrosinase knock-out [TYR knock-out]) cell line in vitro and in a murine model. Methods: The B16F10 (TYR knock-out) was developed using CRISPR/Cas9. After the treatment with light-activated Bel-sar, cytotoxicity and exposure of damage-associated molecular patterns (DAMPs) were measured by flow cytometry. Treated tumor cells were co-cultured with bone marrow-derived macrophages (BMDMs) and dendritic cells (DCs) to assess phagocytosis and activation. Both cell lines were injected subcutaneously in syngeneic C57BL/6 mice. Results: Knock-out of the tyrosinase gene in B16F10 led to loss of pigmentation and immature melanosomes. Pigmented tumors contained more M1 and fewer M2 macrophages compared with amelanotic tumors. Bel-sar treatment induced near complete cell death, accompanied with enhanced exposure of DAMPs in both cell lines, resulting in enhanced phagocytosis of BMDMs and maturation of DCs. Bel-sar treatment induced a shift to M1 macrophages and delayed tumor growth in both in vivo tumor models. Following treatment, especially the pigmented tumors and their draining lymph nodes contained IFN-gamma positive CD8+T cells. Conclusions: Pigmentation influenced the type of infiltrating macrophages in the tumor, with more M1 macrophages in pigmented tumors. Belzupacap sarotalocan treatment induced immunogenic cell death and tumor growth delay in pigmented as well as in nonpigmented models and stimulated M1 macrophage influx in both models.


Subject(s)
Melanoma , Animals , Mice , Melanoma/genetics , Monophenol Monooxygenase/metabolism , Mice, Inbred C57BL , Macrophages/metabolism , Pigmentation
4.
Stem Cell Reports ; 18(9): 1793-1810, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37541258

ABSTRACT

CRB1 gene mutations can cause early- or late-onset retinitis pigmentosa, Leber congenital amaurosis, or maculopathy. Recapitulating human CRB1 phenotypes in animal models has proven challenging, necessitating the development of alternatives. We generated human induced pluripotent stem cell (iPSC)-derived retinal organoids of patients with retinitis pigmentosa caused by biallelic CRB1 mutations and evaluated them against autologous gene-corrected hiPSCs and hiPSCs from healthy individuals. Patient organoids show decreased levels of CRB1 and NOTCH1 expression at the retinal outer limiting membrane. Proximity ligation assays show that human CRB1 and NOTCH1 can interact via their extracellular domains. CRB1 patient organoids feature increased levels of WDFY1+ vesicles, fewer RAB11A+ recycling endosomes, decreased VPS35 retromer complex components, and more degradative endolysosomal compartments relative to isogenic control organoids. Taken together, our data demonstrate that patient-derived retinal organoids enable modeling of retinal degeneration and highlight the importance of CRB1 in early endosome maturation receptor recycling in the retina.


Subject(s)
Induced Pluripotent Stem Cells , Retinal Degeneration , Retinitis Pigmentosa , Animals , Humans , Induced Pluripotent Stem Cells/metabolism , Retina/metabolism , Retinal Degeneration/genetics , Retinitis Pigmentosa/genetics , Mutation , Organoids/metabolism , Eye Proteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
5.
Science ; 380(6646): 758-764, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37200435

ABSTRACT

Zebrafish hearts can regenerate by replacing damaged tissue with new cardiomyocytes. Although the steps leading up to the proliferation of surviving cardiomyocytes have been extensively studied, little is known about the mechanisms that control proliferation and redifferentiation to a mature state. We found that the cardiac dyad, a structure that regulates calcium handling and excitation-contraction coupling, played a key role in the redifferentiation process. A component of the cardiac dyad called leucine-rich repeat-containing 10 (Lrrc10) acted as a negative regulator of proliferation, prevented cardiomegaly, and induced redifferentiation. We found that its function was conserved in mammalian cardiomyocytes. This study highlights the importance of the underlying mechanisms required for heart regeneration and their application to the generation of fully functional cardiomyocytes.


Subject(s)
Calcium , Heart , Myocytes, Cardiac , Regeneration , Sarcomeres , Zebrafish , Animals , Calcium/physiology , Cell Proliferation , Heart/physiology , Myocytes, Cardiac/physiology , Sarcomeres/physiology , Zebrafish/physiology
6.
Stroke ; 53(6): 1964-1974, 2022 06.
Article in English | MEDLINE | ID: mdl-35300531

ABSTRACT

BACKGROUND: To determine whether extremely mild small vessel disease (SVD) phenotypes can occur in NOTCH3 variant carriers from Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) pedigrees using clinical, genetic, neuroimaging, and skin biopsy findings. METHODS: Individuals from CADASIL pedigrees fulfilling criteria for extremely mild NOTCH3-associated SVD (mSVDNOTCH3) were selected from the cross-sectional Dutch CADASIL cohort (n=200), enrolled between 2017 and 2020. Brain magnetic resonance imaging were quantitatively assessed for SVD imaging markers. Immunohistochemistry and electron microscopy was used to quantitatively assess and compare NOTCH3 ectodomain (NOTCH3ECD) aggregation and granular osmiophilic material deposits in the skin vasculature of mSVDNOTCH3 cases and symptomatic CADASIL patients. RESULTS: Seven cases were identified that fulfilled the mSVDNOTCH3 criteria, with a mean age of 56.6 years (range, 50-72). All of these individuals harbored a NOTCH3 variant located in one of EGFr domains 7-34 and had a normal brain magnetic resonance imaging, except the oldest individual, aged 72, who had beginning confluence of WMH (Fazekas score 2) and 1 cerebral microbleed. mSVDNOTCH3 cases had very low levels of NOTCH3ECD aggregation in skin vasculature, which was significantly less than in symptomatic EGFr 7-34 CADASIL patients (P=0.01). Six mSVDNOTCH3 cases had absence of granular osmiophilic material deposits. CONCLUSIONS: Our findings demonstrate that extremely mild SVD phenotypes can occur in individuals from CADASIL pedigrees harboring NOTCH3 EGFr 7-34 variants with normal brain magnetic resonance imaging up to age 58 years. Our study has important implications for CADASIL diagnosis, disease prediction, and the counseling of individuals from EGFr 7-34 CADASIL pedigrees.


Subject(s)
CADASIL , Leukoencephalopathies , Humans , Biopsy , Brain/metabolism , CADASIL/diagnostic imaging , CADASIL/genetics , Cross-Sectional Studies , ErbB Receptors/genetics , Leukoencephalopathies/pathology , Magnetic Resonance Imaging , Mutation/genetics , Receptor, Notch3/genetics , Receptors, Notch/genetics , Receptors, Notch/metabolism
7.
Nat Biomed Eng ; 6(4): 389-402, 2022 04.
Article in English | MEDLINE | ID: mdl-34992271

ABSTRACT

The lack of a scalable and robust source of well-differentiated human atrial myocytes constrains the development of in vitro models of atrial fibrillation (AF). Here we show that fully functional atrial myocytes can be generated and expanded one-quadrillion-fold via a conditional cell-immortalization method relying on lentiviral vectors and the doxycycline-controlled expression of a recombinant viral oncogene in human foetal atrial myocytes, and that the immortalized cells can be used to generate in vitro models of AF. The method generated 15 monoclonal cell lines with molecular, cellular and electrophysiological properties resembling those of primary atrial myocytes. Multicellular in vitro models of AF generated using the immortalized atrial myocytes displayed fibrillatory activity (with activation frequencies of 6-8 Hz, consistent with the clinical manifestation of AF), which could be terminated by the administration of clinically approved antiarrhythmic drugs. The conditional cell-immortalization method could be used to generate functional cell lines from other human parenchymal cells, for the development of in vitro models of human disease.


Subject(s)
Atrial Fibrillation , Anti-Arrhythmia Agents/metabolism , Anti-Arrhythmia Agents/therapeutic use , Heart Atria , Humans , Myocytes, Cardiac/metabolism
8.
Haematologica ; 107(8): 1827-1839, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35081689

ABSTRACT

Von Willebrand factor (VWF) is a multimeric hemostatic protein primarily synthesized in endothelial cells. VWF is stored in endothelial storage organelles, the Weibel-Palade bodies (WPB), whose biogenesis strongly depends on VWF anterograde trafficking and Golgi architecture. Elongated WPB morphology is correlated to longer VWF strings with better adhesive properties. We previously identified the SNARE SEC22B, which is involved in anterograde endoplasmic reticulum-to-Golgi transport, as a novel regulator of WPB elongation. To elucidate novel determinants of WPB morphology we explored endothelial SEC22B interaction partners in a mass spectrometry-based approach, identifying the Golgi SNARE Syntaxin 5 (STX5). We established STX5 knockdown in endothelial cells using shRNA-dependent silencing and analyzed WPB and Golgi morphology, using confocal and electron microscopy. STX5-depleted endothelial cells exhibited extensive Golgi fragmentation and decreased WPB length, which was associated with reduced intracellular VWF levels, and impaired stimulated VWF secretion. However, the secretion-incompetent organelles in shSTX5 cells maintained WPB markers such as Angiopoietin 2, P-selectin, Rab27A, and CD63. In brief, we identified SNARE protein STX5 as a novel regulator of WPB biogenesis.


Subject(s)
Weibel-Palade Bodies , von Willebrand Factor , Body Size , Cells, Cultured , Endothelial Cells/metabolism , Exocytosis , Humans , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Weibel-Palade Bodies/metabolism , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
9.
Neuropathol Appl Neurobiol ; 48(1): e12751, 2022 02.
Article in English | MEDLINE | ID: mdl-34297860

ABSTRACT

AIMS: CADASIL, the most prevalent hereditary cerebral small vessel disease, is caused by cysteine-altering NOTCH3 variants (NOTCH3cys ) leading to vascular NOTCH3 protein aggregation. It has recently been shown that variants located in one of NOTCH3 protein epidermal growth-factor like repeat (EGFr) domains 1-6, are associated with a more severe phenotype than variants located in one of the EGFr domains 7-34. The underlying mechanism for this genotype-phenotype correlation is unknown. The aim of this study was to analyse whether NOTCH3cys variant position is associated with NOTCH3 protein aggregation load. METHODS: We quantified vascular NOTCH3 aggregation in skin biopsies (n = 25) and brain tissue (n = 7) of CADASIL patients with a NOTCH3cys EGFr 1-6 variant or a EGFr 7-34 variant, using NOTCH3 immunohistochemistry (NOTCH3 score) and ultrastructural analysis of granular osmiophilic material (GOM count). Disease severity was assessed by neuroimaging (lacune count and white matter hyperintensity volume) and disability (modified Rankin scale). RESULTS: Patients with NOTCH3cys EGFr 7-34 variants had lower NOTCH3 scores (P = 1.3·10-5 ) and lower GOM counts (P = 8.2·10-5 ) than patients with NOTCH3cys EGFr 1-6 variants in skin vessels. A similar trend was observed in brain vasculature. In the EGFr 7-34 group, NOTCH3 aggregation levels were associated with lacune count (P = 0.03) and white matter hyperintensity volume (P = 0.02), but not with disability. CONCLUSIONS: CADASIL patients with an EGFr 7-34 variant have significantly less vascular NOTCH3 aggregation than patients with an EGFr 1-6 variant. This may be one of the factors underlying the difference in disease severity between NOTCH3cys EGFr 7-34 and EGFr 1-6 variants.


Subject(s)
CADASIL , Brain/pathology , CADASIL/genetics , CADASIL/metabolism , CADASIL/pathology , Humans , Magnetic Resonance Imaging , Mutation , Neuroimaging , Phenotype , Receptor, Notch3/genetics , Receptor, Notch3/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism
10.
Sci Adv ; 7(45): eabg8583, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34739320

ABSTRACT

Osteoarthritis is the most prevalent joint disease worldwide, yet progress in development of effective disease-modifying treatments is slow because of lack of insight into the underlying disease pathways. Therefore, we aimed to identify the causal pathogenic mutation in an early-onset osteoarthritis family, followed by functional studies in human induced pluripotent stem cells (hiPSCs) in an in vitro organoid cartilage model. We demonstrated that the identified causal missense mutation in the gelatin-binding domain of the extracellular matrix protein fibronectin resulted in significant decreased binding capacity to collagen type II. Further analyses of formed hiPSC-derived neo-cartilage tissue highlighted that mutated fibronectin affected chondrogenic capacity and propensity to a procatabolic osteoarthritic state. Together, we demonstrate that binding of fibronectin to collagen type II is crucial for fibronectin downstream gene expression of chondrocytes. We advocate that effective treatment development should focus on restoring or maintaining proper binding between fibronectin and collagen type II.

11.
Glia ; 69(11): 2752-2766, 2021 11.
Article in English | MEDLINE | ID: mdl-34343377

ABSTRACT

We have recently identified a novel plasticity protein, doublecortin-like (DCL), that is specifically expressed in the shell of the mouse suprachiasmatic nucleus (SCN). DCL is implicated in neuroplastic events, such as neurogenesis, that require structural rearrangements of the microtubule cytoskeleton, enabling dynamic movements of cell bodies and dendrites. We have inspected DCL expression in the SCN by confocal microscopy and found that DCL is expressed in GABA transporter-3 (GAT3)-positive astrocytes that envelope arginine vasopressin (AVP)-expressing cells. To investigate the role of these DCL-positive astrocytes in circadian rhythmicity, we have used transgenic mice expressing doxycycline-induced short-hairpin (sh) RNA's targeting DCL mRNA (DCL knockdown mice). Compared with littermate wild type (WT) controls, DCL-knockdown mice exhibit significant shorter circadian rest-activity periods in constant darkness and adjusted significantly faster to a jet-lag protocol. As DCL-positive astrocytes are closely associated with AVP-positive cells, we analyzed AVP expression in DCL-knockdown mice and in their WT littermates by 3D reconstructions and transmission electron microscopy (TEM). We found significantly higher numbers of AVP-positive cells with increased volume and more intensity in DCL-knockdown mice. We found alterations in the numbers of dense core vesicle-containing neurons at ZT8 and ZT20 suggesting that the peak and trough of neuropeptide biosynthesis is dampened in DCL-knockdown mice compared to WT littermates. Together, our data suggest an important role for the astrocytic plasticity in the regulation of circadian rhythms and point to the existence of a specific DCL+ astrocyte-AVP+ neuronal network located in the dorsal SCN implicated in AVP biosynthesis.


Subject(s)
Astrocytes , Circadian Rhythm , Animals , Astrocytes/metabolism , Circadian Rhythm/physiology , Doublecortin Domain Proteins , Doublecortin-Like Kinases , Mice , Suprachiasmatic Nucleus/metabolism , Vasopressins/metabolism
12.
Int J Mol Sci ; 22(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808129

ABSTRACT

Mutations in the Crumbs homologue 1 (CRB1) gene cause inherited retinal dystrophies, such as early-onset retinitis pigmentosa and Leber congenital amaurosis. A Brown Norway rat strain was reported with a spontaneous insertion-deletion (indel) mutation in exon 6 of Crb1. It has been reported that these Crb1 mutant rats show vascular abnormalities associated with retinal telangiectasia and possess an early-onset retinal degenerative phenotype with outer limiting membrane breaks and focal loss of retinal lamination at 2 months of age. Here, we further characterized the morphological phenotype of new-born and adult Crb1 mutant rats in comparison with age-matched Brown Norway rats without a mutation in Crb1. A significantly decreased retinal function and visual acuity was observed in Crb1 mutant rats at 1 and 3 months of age, respectively. Moreover, in control rats, the subcellular localization of canonical CRB1 was observed at the subapical region in Müller glial cells while CRB2 was observed at the subapical region in both photoreceptors and Müller glial cells by immuno-electron microscopy. CRB1 localization was lost in the Crb1 mutant rats, whereas CRB2 was still observed. In addition, we determined the tropism of subretinal or intravitreally administered AAV5-, AAV9- or AAV6-variant ShH10Y445F vectors in new-born control and Crb1 mutant rat retinas. We showed that subretinal injection of AAV5 and AAV9 at postnatal days 5 (P5) or 8 (P8) predominantly infected the retinal pigment epithelium (RPE) and photoreceptor cells; while intravitreal injection of ShH10Y445F at P5 or P8 resulted in efficient infection of mainly Müller glial cells. Using knowledge of the subcellular localization of CRB1 and the ability of ShH10Y445F to infect Müller glial cells, canonical hCRB1 and hCRB2 AAV-mediated gene therapy were explored in new-born Crb1 mutant rats. Enhanced retinal function after gene therapy delivery in the Crb1 rat was not observed. No timely rescue of the retinal phenotype was observed using retinal function and visual acuity, suggesting the need for earlier onset of expression of recombinant hCRB proteins in Müller glial cells to rescue the severe retinal phenotype in Crb1 mutant rats.


Subject(s)
Calcium-Binding Proteins/genetics , Dependovirus/physiology , Genetic Therapy/methods , Nerve Tissue Proteins/genetics , Retinal Dystrophies/genetics , Animals , Animals, Newborn , Calcium-Binding Proteins/metabolism , Carrier Proteins/genetics , Dependovirus/genetics , Ependymoglial Cells/metabolism , Eye Proteins/genetics , Genetic Vectors/administration & dosage , Genetic Vectors/pharmacology , Intravitreal Injections , Membrane Proteins/genetics , Mutation , Nerve Tissue Proteins/metabolism , Phenotype , Rats , Rats, Mutant Strains , Retina/physiopathology , Retinal Dystrophies/etiology , Retinal Dystrophies/therapy , Retinal Pigment Epithelium/metabolism , Viral Tropism
13.
Haematologica ; 106(4): 1138-1147, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32336681

ABSTRACT

Von Willebrand factor (VWF) is a multimeric hemostatic protein that is synthesized in endothelial cells, where it is stored for secretion in elongated secretory organelles, so-called Weibel-Palade bodies (WPBs). Hemostatic activity of VWF is strongly tied to WPB length, but how endothelial cells control the dimensions of their WPBs is unclear. In this study we used a targeted shRNA screen to identify the longin-SNARE Sec22b as a novel determinant of WPB size and VWF trafficking. We found that Sec22b depletion resulted in loss of the typically elongated WPB morphology along with disintegration of the Golgi and dilation of rough ER (rER) cisternae. This was accompanied by reduced proteolytic processing of VWF, accumulation of VWF in the dilated rER and reduced basal and stimulated VWF secretion. Our data demonstrate that the elongation of WPBs, and thus adhesive activity of its cargo VWF, is determined by the rate of anterograde transport between ER and Golgi, which depends on Sec22b-containing SNARE complexes.


Subject(s)
Endothelial Cells , Weibel-Palade Bodies , Cells, Cultured , Exocytosis , von Willebrand Factor/genetics
14.
Cell Stem Cell ; 26(6): 862-879.e11, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32459996

ABSTRACT

Cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) are functionally immature, but this is improved by incorporation into engineered tissues or forced contraction. Here, we showed that tri-cellular combinations of hiPSC-derived CMs, cardiac fibroblasts (CFs), and cardiac endothelial cells also enhance maturation in easily constructed, scaffold-free, three-dimensional microtissues (MTs). hiPSC-CMs in MTs with CFs showed improved sarcomeric structures with T-tubules, enhanced contractility, and mitochondrial respiration and were electrophysiologically more mature than MTs without CFs. Interactions mediating maturation included coupling between hiPSC-CMs and CFs through connexin 43 (CX43) gap junctions and increased intracellular cyclic AMP (cAMP). Scaled production of thousands of hiPSC-MTs was highly reproducible across lines and differentiated cell batches. MTs containing healthy-control hiPSC-CMs but hiPSC-CFs from patients with arrhythmogenic cardiomyopathy strikingly recapitulated features of the disease. Our MT model is thus a simple and versatile platform for modeling multicellular cardiac diseases that will facilitate industry and academic engagement in high-throughput molecular screening.


Subject(s)
Heart Diseases , Induced Pluripotent Stem Cells , Cell Differentiation , Endothelial Cells , Humans , Myocytes, Cardiac , Stromal Cells
15.
Sci Rep ; 10(1): 5499, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32218519

ABSTRACT

Research on acute and chronic lung diseases would greatly benefit from reproducible availability of alveolar epithelial cells (AEC). Primary alveolar epithelial cells can be derived from human lung tissue but the quality of these cells is highly donor dependent. Here, we demonstrated that culture of EpCAM+ cells derived from human induced pluripotent stem cells (hiPSC) at the physiological air-liquid interface (ALI) resulted in type 2 AEC-like cells (iAEC2) with alveolar characteristics. iAEC2 cells expressed native AEC2 markers (surfactant proteins and LPCAT-1) and contained lamellar bodies. ALI-iAEC2 were used to study alveolar repair over a period of 2 weeks following mechanical wounding of the cultures and the responses were compared with those obtained using primary AEC2 (pAEC2) isolated from resected lung tissue. Addition of the Wnt/ß-catenin activator CHIR99021 reduced wound closure in the iAEC2 cultures but not pAEC2 cultures. This was accompanied by decreased surfactant protein expression and accumulation of podoplanin-positive cells at the wound edge. These results demonstrated the feasibility of studying alveolar repair using hiPSC-AEC2 cultured at the ALI and indicated that this model can be used in the future to study modulation of alveolar repair by (pharmaceutical) compounds.


Subject(s)
Alveolar Epithelial Cells/physiology , Induced Pluripotent Stem Cells/physiology , Models, Biological , Alveolar Epithelial Cells/cytology , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Cells, Cultured , Humans , In Vitro Techniques , Induced Pluripotent Stem Cells/cytology , Pulmonary Alveoli/injuries , Pulmonary Alveoli/physiology , Pulmonary Alveoli/physiopathology , Regeneration/physiology , Wound Healing/physiology
16.
Hum Mol Genet ; 29(11): 1853-1863, 2020 07 21.
Article in English | MEDLINE | ID: mdl-31960911

ABSTRACT

CADASIL is a vascular protein aggregation disorder caused by cysteine-altering NOTCH3 variants, leading to mid-adult-onset stroke and dementia. Here, we report individuals with a cysteine-altering NOTCH3 variant that induces exon 9 skipping, mimicking therapeutic NOTCH3 cysteine correction. The index came to our attention after a coincidental finding on a commercial screening MRI, revealing white matter hyperintensities. A heterozygous NOTCH3 c.1492G>T, p.Gly498Cys variant, was identified using a gene panel, which was also present in four first- and second-degree relatives. Although some degree of white matter hyperintensities was present on MRI in all family members with the NOTCH3 variant, the CADASIL phenotype was mild, as none had lacunes on MRI and there was no disability or cognitive impairment above the age of 60 years. RT-PCR and Sanger sequencing analysis on patient fibroblast RNA revealed that exon 9 was absent from the majority of NOTCH3 transcripts of the mutant allele, effectively excluding the mutation. NOTCH3 aggregation was assessed in skin biopsies using electron microscopy and immunohistochemistry and did not show granular osmiophilic material and only very mild NOTCH3 staining. For purposes of therapeutic translatability, we show that, in cell models, exon 9 exclusion can be obtained using antisense-mediated exon skipping and CRISPR/Cas9-mediated genome editing. In conclusion, this study provides the first in-human evidence that cysteine corrective NOTCH3 exon skipping is associated with less NOTCH3 aggregation and an attenuated phenotype, justifying further therapeutic development of NOTCH3 cysteine correction for CADASIL.


Subject(s)
CADASIL/genetics , Cysteine/genetics , Protein Aggregation, Pathological/genetics , Receptor, Notch3/genetics , White Matter/metabolism , Adult , Aged , Biopsy , CADASIL/diagnostic imaging , CADASIL/metabolism , CADASIL/physiopathology , CRISPR-Cas Systems/genetics , Exons/genetics , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Protein Aggregation, Pathological/diagnostic imaging , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Severity of Illness Index , Skin/chemistry , Skin/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology
17.
Transl Stroke Res ; 11(3): 517-527, 2020 06.
Article in English | MEDLINE | ID: mdl-31667734

ABSTRACT

CADASIL is a NOTCH3-associated cerebral small vessel disease. A pathological ultrastructural disease hallmark is the presence of NOTCH3-protein containing deposits called granular osmiophilic material (GOM), in small arteries. How these GOM deposits develop over time and what their role is in disease progression is largely unknown. Here, we studied the progression of GOM deposits in humanized transgenic NOTCH3Arg182Cys mice, compared them to GOM deposits in patient material, and determined whether GOM deposits in mice are associated with a functional CADASIL phenotype. We found that GOM deposits are not static, but rather progress in ageing mice, both in terms of size and aspect. We devised a GOM classification system, reflecting size, morphology and electron density. Six-month-old mice showed mostly early stage GOM, whereas older mice and patient vessels showed predominantly advanced stage GOM, but also early stage GOM. Mutant mice did not develop the most severe GOM stage seen in patient material. This absence of end-stage GOM in mice was associated with an overall lack of histological vascular pathology, which may explain why the mice did not reveal functional deficits in cerebral blood flow, cognition and motor function. Taken together, our data indicate that GOM progress over time, and that new GOM deposits are continuously being formed. The GOM staging system we introduce here allows for uniform GOM deposit classification in future mouse and human studies, which may lead to more insight into a potential association between GOM stage and CADASIL disease severity, and the role of GOM in disease progression.


Subject(s)
Brain/blood supply , Brain/pathology , CADASIL/genetics , CADASIL/pathology , Receptor, Notch3/genetics , Animals , Brain/physiopathology , Brain/ultrastructure , Cerebrovascular Circulation , Humans , Mice, Inbred C57BL , Mice, Transgenic
18.
Int J Mol Sci ; 20(17)2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31438467

ABSTRACT

Variations in the Crumbs homolog-1 (CRB1) gene are associated with a wide variety of autosomal recessive retinal dystrophies, including early onset retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA). CRB1 belongs to the Crumbs family, which in mammals includes CRB2 and CRB3. Here, we studied the specific roles of CRB2 in rod photoreceptor cells and whether ablation of CRB2 in rods exacerbates the Crb1-disease. Therefore, we assessed the morphological, retinal, and visual functional consequences of specific ablation of CRB2 from rods with or without concomitant loss of CRB1. Our data demonstrated that loss of CRB2 in mature rods resulted in RP. The retina showed gliosis and disruption of the subapical region and adherens junctions at the outer limiting membrane. Rods were lost at the peripheral and central superior retina, while gross retinal lamination was preserved. Rod function as measured by electroretinography was impaired in adult mice. Additional loss of CRB1 exacerbated the retinal phenotype leading to an early reduction of the dark-adapted rod photoreceptor a-wave and reduced contrast sensitivity from 3-months-of-age, as measured by optokinetic tracking reflex (OKT) behavior testing. The data suggest that CRB2 present in rods is required to prevent photoreceptor degeneration and vision loss.


Subject(s)
Contrast Sensitivity/physiology , Leber Congenital Amaurosis/metabolism , Membrane Proteins/metabolism , Retina/metabolism , Retina/pathology , Retinal Rod Photoreceptor Cells/metabolism , Animals , Contrast Sensitivity/genetics , Disease Models, Animal , Electroretinography , Immunohistochemistry , Leber Congenital Amaurosis/pathology , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology
19.
Stem Cell Reports ; 12(5): 906-919, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30956116

ABSTRACT

Human retinal organoids from induced pluripotent stem cells (hiPSCs) can be used to confirm the localization of proteins in retinal cell types and to test transduction and expression patterns of gene therapy vectors. Here, we compared the onset of CRB protein expression in human fetal retina with human iPSC-derived retinal organoids. We show that CRB2 protein precedes the expression of CRB1 in the developing human retina. Our data suggest the presence of CRB1 and CRB2 in human photoreceptors and Müller glial cells. Thus the fetal CRB complex formation is replicated in hiPSC-derived retina. CRB1 patient iPSC retinal organoids showed disruptions at the outer limiting membrane as found in Crb1 mutant mice. Furthermore, AAV serotype 5 (AAV5) is potent in infecting human Müller glial cells and photoreceptors in hiPSC-derived retinas and retinal explants. Our data suggest that human photoreceptors can be efficiently transduced by AAVs in the presence of photoreceptor segments.


Subject(s)
Carrier Proteins/metabolism , Ependymoglial Cells/metabolism , Eye Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Organoids/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Retina/metabolism , Adult , Carrier Proteins/genetics , Cells, Cultured , Dependovirus/genetics , Ependymoglial Cells/cytology , Ependymoglial Cells/ultrastructure , Eye Proteins/genetics , Female , Fetus , Humans , Immunohistochemistry , Induced Pluripotent Stem Cells/cytology , Membrane Proteins/genetics , Microscopy, Immunoelectron , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Nerve Tissue Proteins/genetics , Organoids/cytology , Photoreceptor Cells, Vertebrate/ultrastructure , Pregnancy , Retina/cytology , Retina/embryology
20.
Hum Mol Genet ; 28(1): 105-123, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30239717

ABSTRACT

Variations in the human Crumbs homolog-1 (CRB1) gene lead to an array of retinal dystrophies including early onset of retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) in children. To investigate the physiological roles of CRB1 and CRB2 in retinal Müller glial cells (MGCs), we analysed mouse retinas lacking both proteins in MGC. The peripheral retina showed a faster progression of dystrophy than the central retina. The central retina showed retinal folds, disruptions at the outer limiting membrane, protrusion of photoreceptor nuclei into the inner and outer segment layers and ingression of photoreceptor nuclei into the photoreceptor synaptic layer. The peripheral retina showed a complete loss of the photoreceptor synapse layer, intermingling of photoreceptor nuclei within the inner nuclear layer and ectopic photoreceptor cells in the ganglion cell layer. Electroretinography showed severe attenuation of the scotopic a-wave at 1 month of age with responses below detection levels at 3 months of age. The double knockout mouse retinas mimicked a phenotype equivalent to a clinical LCA phenotype due to loss of CRB1. Localization of CRB1 and CRB2 in non-human primate (NHP) retinas was analyzed at the ultrastructural level. We found that NHP CRB1 and CRB2 proteins localized to the subapical region adjacent to adherens junctions at the outer limiting membrane in MGC and photoreceptors. Our data suggest that loss of CRB2 in MGC aggravates the CRB1-associated RP-like phenotype towards an LCA-like phenotype.


Subject(s)
Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Retinitis Pigmentosa/genetics , Animals , Carrier Proteins/genetics , Carrier Proteins/physiology , Disease Models, Animal , Electroretinography , Ependymoglial Cells/metabolism , Ependymoglial Cells/physiology , Eye Proteins/genetics , Eye Proteins/physiology , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/physiopathology , Macaca fascicularis , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Nerve Tissue Proteins/physiology , Neuroglia/physiology , Phenotype , Photoreceptor Cells/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Retina/metabolism , Retinal Dystrophies/metabolism , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...