Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 44(9): 1026-1031, 2023 09.
Article in English | MEDLINE | ID: mdl-37562828

ABSTRACT

BACKGROUND AND PURPOSE: A global decrease in brain perfusion has recently been reported during exposure to a ground-based spaceflight analog. Considering that CSF and glymphatic flow are hypothesized to be propelled by arterial pulsations, it is unknown whether a change in perfusion would impact these CSF compartments. The aim of the current study was to evaluate the relationship among changes in cerebral perfusion, ventricular volume, and perivascular space volume before, during, and after a spaceflight analog. MATERIALS AND METHODS: Eleven healthy participants underwent 30 days of bed rest at 6° head-down tilt with 0.5% atmospheric CO2 as a spaceflight analog. For each participant, 6 MR imaging brain scans, including perfusion and anatomic-weighted T1 sequences, were obtained before, during, and after the analog period. Global perfusion, ventricular volume, and perivascular space volume time courses were constructed and evaluated with repeated measures ANOVAs. RESULTS: Global perfusion followed a divergent time trajectory from ventricular and perivascular space volume, with perfusion decreasing during the analog, whereas ventricular and perivascular space volume increased (P < .001). These patterns subsequently reversed during the 2-week recovery period. CONCLUSIONS: The patterns of change in brain physiology observed in healthy participants suggest a relationship between cerebral perfusion and CSF homeostasis. Further study is warranted to determine whether a causal relationship exists and whether similar neurophysiologic responses occur during spaceflight.


Subject(s)
Space Flight , Humans , Space Flight/methods , Brain/blood supply , Magnetic Resonance Imaging/methods , Head-Down Tilt/physiology , Perfusion , Cerebrovascular Circulation/physiology
2.
J Electromyogr Kinesiol ; 19(2): 208-18, 2009 Apr.
Article in English | MEDLINE | ID: mdl-17560125

ABSTRACT

The aim of the present study was to assess the time course and the origin of adaptations in neuromuscular function as a consequence of prolonged bed rest with or without countermeasure. Twenty healthy males volunteered to participate in the present study and were randomly assigned to either an inactive control group (Ctrl) or to a resistive vibration exercise (RVE) group. Prior to, and seven times during bed rest, we recorded high-density surface electromyogram (sEMG) signals from the vastus lateralis muscle during isometric knee extension exercise at a range of contraction intensities (5-100% of maximal voluntary isometric torque). The high-density sEMG signals were analyzed for amplitude (root mean square, RMS), frequency content (median frequency, F(med)) and muscle fiber conduction velocity (MFCV) in an attempt to describe bed rest-induced changes in neural activation properties at the levels of the motor control and muscle fibers. Without countermeasures, bed rest resulted in a significant progressive decline in maximal isometric knee extension strength, whereas RMS remained unaltered throughout the bed rest period. In line with observed muscle atrophy, both F(med) and MFCV declined during bed rest. RVE training during bed rest resulted in maintained maximal isometric knee extension strength, and a strong increase ( approximately 30%) in maximal EMG amplitude, from 10 days of bed rest on. Exclusion of other factors led to the conclusion that the RVE training increased motor unit firing rates as a consequence of an increased excitability of motor neurons. An increased firing rate might have been essential under training sessions, but it did not affect isometric voluntary torque capacity.


Subject(s)
Bed Rest/methods , Electromyography/methods , Exercise/physiology , Isometric Contraction/physiology , Muscle, Skeletal/physiology , Physical Endurance/physiology , Rest/physiology , Adaptation, Physiological/physiology , Adult , Humans , Male , Muscle, Skeletal/innervation , Peripheral Nerves/physiology , Spinal Cord/physiology , Vibration
3.
Eur J Appl Physiol ; 103(4): 431-40, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18386049

ABSTRACT

The contractile characteristics of fast voluntary and electrically evoked unilateral isometric knee extensions were followed in 16 healthy men during 56 days of horizontal bed rest and assessed at bed rest days 4, 7, 10, 17, 24, 38 and 56. Subjects were randomized to either an inactive control group (Ctrl, n = 8) or a resistive vibration exercise countermeasure group (RVE, n = 8). No changes were observed in neural activation, indicated by the amplitude of the surface electromyogram, or the initial rate of voluntary torque development in either group during bed rest. In contrast, for Ctrl, the force oscillation amplitude at 10 Hz stimulation increased by 48% (P < 0.01), the time to reach peak torque at 300 Hz stimulation decreased by 7% (P < 0.01), and the half relaxation time at 150 Hz stimulation tended to be slightly reduced by 3% (P = 0.056) after 56 days of bed rest. No changes were observed for RVE. Torque production at 10 Hz stimulation relative to maximal (150 Hz) stimulation was increased after bed rest for both Ctrl (15%; P < 0.05) and RVE (41%; P < 0.05). In conclusion, bed rest without exercise countermeasure resulted in intrinsic speed properties of a faster knee extensor group, which may have partly contributed to the preserved ability to perform fast voluntary contractions. The changes in intrinsic contractile properties were prevented by resistive vibration exercise, and voluntary motor performance remained unaltered for RVE subjects as well.


Subject(s)
Bed Rest , Exercise Therapy/methods , Exercise/physiology , Isometric Contraction/physiology , Muscular Atrophy/prevention & control , Adult , Electric Stimulation , Electromyography , Humans , Knee Joint/physiology , Male , Muscular Atrophy/physiopathology , Torque , Vibration , Volition/physiology
4.
Eur J Appl Physiol ; 97(6): 706-15, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16786354

ABSTRACT

Changes in the quadriceps femoris muscle with respect to anatomical cross sectional area (CSA), neural activation level and muscle strength were determined in 18 healthy men subjected to 8 weeks of horizontal bed rest (BR) with (n = 9) and without (n = 9) resistive vibration exercise (RVE). CSA of the knee extensor muscle group was measured with magnetic resonance imaging every 2 weeks during bed rest. In the control subjects (Ctrl), quadriceps femoris CSA decreased linearly over the 8 weeks of bed rest to -14.1 +/- 5.2% (P < 0.05). This reduction was significantly (P < 0.001) mitigated by the exercise paradigm (-3.5 +/- 4.2%; P < 0.05). Prior to and seven times during bed rest, maximal unilateral voluntary torque (MVT) values of the right leg were measured together with neural activation levels by means of a superimposed stimulation technique. For Ctrl, MVT decreased also linearly over time to -16.8 +/- 7.4% after 8 weeks of bed rest (P < 0.01), whereas the exercise paradigm fully maintained MVT during bed rest. In contrast to previous reports, the maximal voluntary activation remained unaltered for both groups throughout the study. For Ctrl, the absence of deterioration of the activation level might have been related to the repeated testing of muscle function during the bed rest. This notion was supported by the observation that for a subset of Ctrl subjects (n = 5) the MVT of the left leg, which was not tested during BR, was reduced by 20.5 +/- 10.1%, (P < 0.01) which was for those five subjects significantly (P < 0.05) more than the 11.1 +/- 9.2% (P < 0.01) reduction for the right, regularly tested leg.


Subject(s)
Bed Rest , Exercise/physiology , Quadriceps Muscle/physiology , Adult , Humans , Male , Muscle Contraction/physiology , Muscular Atrophy/physiopathology , Muscular Atrophy/prevention & control , Quadriceps Muscle/anatomy & histology , Supine Position/physiology , Torque , Vibration/therapeutic use , Weightlessness Countermeasures
SELECTION OF CITATIONS
SEARCH DETAIL
...