Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Animal ; 15(2): 100033, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33573982

ABSTRACT

Second litter syndrome (SLS) in sows is when fertility performance is lower in the second parity than in the first parity. The causes of SLS have been associated with lactation weight loss, premature first insemination, short lactation length, short weaning to insemination interval, season, and farm of farrowing. There is little known about the genetic background of SLS or if it is a real biological problem or just a statistical issue. Thus, we aimed to evaluate risk factors, investigate genetic background of SLS, and estimate the probability of SLS existing due to the statistical properties of the trait. The records of 246 799 litters (total number born, TNB) from 46 218 Large White sows were used. A total of 15 398 sows had SLS. Two traits were defined: first a binominal trait if a sow had SLS or not (biSLS) and second a continuous trait (Range) created by subtracting the total number of piglets born in the first parity (TNB1) from the piglets born in the second parity (TNB2). Lactation length, farm, and season of the farrowing had significant effects on SLS traits when tested as fixed effects in the genetic model. These effects are farm management-related factors. The age at first insemination and weaning to insemination interval were significant only for other reproduction traits (e.g., TNB1, TNB2, litter weight in parity 1 and 2). The heritability of biSLS was 0.05 (on observed scale), whereas heritability of Range was 0.03. To verify the existence of SLS data with records of 50 000 sows and 9 parities was simulated. The simulations showed that the average expected frequency of SLS across all the parities was 0.49 (±0.05) while the observed frequency in the actual data was 0.46 (±0.04). We compared this to SLS frequencies in 67 farms and only 2 farms had more piglets born in the first parity compared to the second. Therefore, on the individual sow level SLS is likely due to statistical properties of the trait, whereas on the farm level SLS is likely due to farm management. Thus, SLS should not be considered an abnormality nor a syndrome if on average the herd litter size in parity 2 is larger than in parity 1.


Subject(s)
Lactation , Reproduction , Animals , Body Weight , Female , Litter Size , Parity , Pregnancy , Swine , Weaning
2.
J Anim Breed Genet ; 137(3): 263-280, 2020 May.
Article in English | MEDLINE | ID: mdl-31709657

ABSTRACT

Genetic control of residual variance offers opportunities to increase uniformity and resilience of livestock and aquaculture species. Improving uniformity and resilience of animals will improve health and welfare of animals and lead to more homogenous products. Our aims in this review were to summarize the current models and methods to study genetic control of residual variance, genetic parameters and genomic results for residual variance and discuss future research directions. Typically, the genetic coefficient of variation is high (median = 0.27; range 0-0.86) and the heritability of residual variance is low (median = 0.01; range 0-0.10). Higher heritabilities can be achieved when increasing the number of records per animal. Divergent selection experiments have supported the feasibility of selecting for high or low residual variance. Genomic studies have revealed associations in regions related to stress, including those from the heat shock protein family. Although the number of studies is growing, genetic control of residual variance is still poorly understood, but big data and genomics offer great opportunities.


Subject(s)
Heat-Shock Proteins/genetics , Livestock/genetics , Selection, Genetic/genetics , Stress, Physiological/genetics , Animals , Aquaculture , Body Weight/genetics , Breeding/standards , Gene Expression Regulation/genetics , Genomics
3.
J Anim Breed Genet ; 136(2): 134-148, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30585650

ABSTRACT

This study aimed to analyse genetic background of variation in reproductive performance between parities of a sow and to investigate selection strategies to change the "parity curve". Total number born (TNB) recorded in Large White sows was provided by Topigs Norsvin. Analysis with basic (BM) and random regression (RRM) models was done in ASReml 4.1. The BM included only a fixed "parity curve", while RRM included 3rd order polynomials for additive genetic and permanent sow effects. Parameters from RRM were used in simulations in SelAction 2.1. Based on Akaike information criterion, RRM was a better model for TNB data. Genetic variance and heritability estimates of TNB from BM and RRM were increasing with parity from parity 2. Genetically, parity 1 is the most different from parities 7 to 10, whereas most similar to parities 2 and 3. This indicates presence of genetic variation to change the "parity curve". Based on simulations, the selection to increase litter size in parity 1 only increases TNB in all parities, but does not change the observed shape of "parity curve", whereas selection for increased TNB in parity 1 and reduced TNB in parity 5 decreases differences between parities, but also reduces overall TNB in all parities. Changing the "parity curve" will be difficult as the genetic and phenotypic relationships between the parities are hard to overcome even when selecting for one parity.


Subject(s)
Breeding , Lactation/genetics , Reproduction/genetics , Swine/genetics , Animals , Female , Genetic Variation , Litter Size/genetics , Phenotype , Pregnancy , Swine/growth & development
4.
BMC Genomics ; 19(1): 619, 2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30115034

ABSTRACT

BACKGROUND: In livestock, residual variance has been studied because of the interest to improve uniformity of production. Several studies have provided evidence that residual variance is partially under genetic control; however, few investigations have elucidated genes that control it. The aim of this study was to identify genomic regions associated with within-family residual variance of yearling weight (YW; N = 423) in Nellore bulls with high density SNP data, using different response variables. For this, solutions from double hierarchical generalized linear models (DHGLM) were used to provide the response variables, as follows: a DGHLM assuming non-null genetic correlation between mean and residual variance (rmv ≠ 0) to obtain deregressed EBV for mean (dEBVm) and residual variance (dEBVv); and a DHGLM assuming rmv = 0 to obtain two alternative response variables for residual variance, dEBVv_r0 and log-transformed variance of estimated residuals (ln_[Formula: see text]). RESULTS: The dEBVm and dEBVv were highly correlated, resulting in common regions associated with mean and residual variance of YW. However, higher effects on variance than the mean showed that these regions had effects on the variance beyond scale effects. More independent association results between mean and residual variance were obtained when null rmv was assumed. While 13 and 4 single nucleotide polymorphisms (SNPs) showed a strong association (Bayes Factor > 20) with dEBVv and ln_[Formula: see text], respectively, only suggestive signals were found for dEBVv_r0. All overlapping 1-Mb windows among top 20 between dEBVm and dEBVv were previously associated with growth traits. The potential candidate genes for uniformity are involved in metabolism, stress, inflammatory and immune responses, mineralization, neuronal activity and bone formation. CONCLUSIONS: It is necessary to use a strategy like assuming null rmv to obtain genomic regions associated with uniformity that are not associated with the mean. Genes involved not only in metabolism, but also stress, inflammatory and immune responses, mineralization, neuronal activity and bone formation were the most promising biological candidates for uniformity of YW. Although no clear evidence of using a specific response variable was found, we recommend consider different response variables to study uniformity to increase evidence on candidate regions and biological mechanisms behind it.


Subject(s)
Body Weight/genetics , Cattle/genetics , Quantitative Trait, Heritable , Animals , Breeding , Conserved Sequence , Genome-Wide Association Study/veterinary , Genotype , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...