Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diagn Microbiol Infect Dis ; 71(1): 29-37, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21798683

ABSTRACT

We evaluated a new multiplex polymerase chain reaction (mPCR), "STDFinder assay", a novel multiplex ligation-dependent probe amplification (MLPA) assay for the simultaneous detection of 7 clinically relevant pathogens of STDs, i.e., Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis, Mycoplasma genitalium, Treponema pallidum, and herpes simplex virus type 1 and 2 (HSV-1 and HSV-2). An internal amplification control was included in the mPCR reaction. The limits of detection for the STDFinder assay varied among the 7 target organisms from 1 to 20 copies per MLPA assay. There were no cross-reactions among any of the probes. Two hundred and forty-two vaginal swabs and an additional 80 specimens with known results for N. gonorrhoeae and C. trachomatis, obtained from infertile women seen at an infertility research clinic at the Kigali Teaching Hospital in Rwanda, were tested by STDFinder assay and the results were confirmed by single real-time PCR using different species-specific targets. Compared to the reference standard, the STDFinder assay showed specificities and sensitivities of 100% and 100%, respectively, for N. gonorrhoeae, C. trachomatis, and M. genitalium; 90.2% and 100%, respectively, for Trichomonas vaginalis; and 96.1% and 100%, respectively, for HSV-2. No specimen was found to be positive for HSV-1 by either the STDFinder assay or the comparator method. Similarly, the sensitivity for Treponema pallidum could not be calculated due to the absence of any Treponema pallidum-positive samples. In conclusion, the STDFinder assays have comparable clinical sensitivity to the conventional mono and duplex real-time PCR assay and are suitable for the routine detection of a broad spectrum of these STDs at relatively low cost due to multiplexing.


Subject(s)
Multiplex Polymerase Chain Reaction , Sexually Transmitted Diseases/diagnosis , Sexually Transmitted Diseases/microbiology , Female , Humans , Sensitivity and Specificity
2.
J Clin Microbiol ; 46(4): 1232-40, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18256230

ABSTRACT

Broad-spectrum analysis for pathogens in patients with respiratory tract infections is becoming more relevant as the number of potential infectious agents is still increasing. Here we describe the new multiparameter RespiFinder assay, which is based on the multiplex ligation-dependent probe amplification (MLPA) technology. This assay detects 15 respiratory viruses in one reaction. The MLPA reaction is preceded by a preamplification step which ensures the detection of both RNA and DNA viruses with the same specificity and sensitivity as individual monoplex real-time reverse transcription-PCRs. The RespiFinder assay was validated with 144 clinical samples, and the results of the assay were compared to those of cell culture and a respiratory syncytial virus (RSV)-specific immunochromatography assay (ICA). Compared to the cell culture results, the RespiFinder assay showed specificities and sensitivities of 98.2% and 100%, respectively, for adenovirus; 96.4% and 100%, respectively, for human metapneumovirus; 98.2% and 100%, respectively, for influenza A virus (InfA); 99.1% and 100%, respectively, for parainfluenza virus type 1 (PIV-1); 99.1% and 80%, respectively, for PIV-3; 90.1% and 100%, respectively, for rhinovirus; and 94.6% and 100%, respectively, for RSV. Compared to the results of the RSV-specific ICA, the RespiFinder assay gave a specificity and a sensitivity of 82.4% and 80%, respectively. PIV-2, PIV-4, influenza B virus, InfA H5N1, and coronavirus 229E were not detected in the clinical specimens tested. The use of the RespiFinder assay resulted in an increase in the diagnostic yield compared to that obtained by cell culture (diagnostic yields, 60% and 35.5%, respectively). In conclusion, the RespiFinder assay provides a user-friendly and high-throughput tool for the simultaneous detection of 15 respiratory viruses with excellent overall performance statistics.


Subject(s)
DNA Viruses/isolation & purification , RNA Viruses/isolation & purification , Respiratory Tract Diseases/virology , Virus Diseases/virology , Adult , Child , Child, Preschool , DNA Primers , DNA Viruses/classification , DNA Viruses/genetics , Humans , Nucleic Acid Amplification Techniques , RNA Virus Infections/virology , RNA Viruses/classification , RNA Viruses/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Virus Cultivation
SELECTION OF CITATIONS
SEARCH DETAIL
...