Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet A ; 182(5): 1008-1020, 2020 05.
Article in English | MEDLINE | ID: mdl-32077592

ABSTRACT

Williams-Beuren syndrome (WBS) is a multisystem disorder caused by a hemizygous deletion on 7q11.23 encompassing 26-28 genes. An estimated 2-5% of patients have "atypical" deletions, which extend in the centromeric and/or telomeric direction from the WBS critical region. To elucidate clinical differentiators among these deletion types, we evaluated 10 individuals with atypical deletions in our cohort and 17 individuals with similarly classified deletions previously described in the literature. Larger deletions in either direction often led to more severe developmental delays, while deletions containing MAGI2 were associated with infantile spasms and seizures in patients. In addition, head size was notably smaller in those with centromeric deletions including AUTS2. Because children with atypical deletions were noted to be less socially engaged, we additionally sought to determine how atypical deletions relate to social phenotypes. Using the Social Responsiveness Scale-2, raters scored individuals with atypical deletions as having different social characteristics to those with typical WBS deletions (p = .001), with higher (more impaired) scores for social motivation (p = .005) in the atypical deletion group. In recognizing these distinctions, physicians can better identify patients, including those who may already carry a clinical or FISH WBS diagnosis, who may benefit from additional molecular evaluation, screening, and therapy. In addition to the clinical findings, we note mild endocrine findings distinct from those typically seen in WBS in several patients with telomeric deletions that included POR. Further study in additional telomeric deletion cases will be needed to confirm this observation.


Subject(s)
Chromosomes, Human, Pair 7/genetics , Multiple Endocrine Neoplasia/genetics , Neurodevelopmental Disorders/genetics , Williams Syndrome/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Chromosome Deletion , Female , Head/abnormalities , Head/physiopathology , Humans , Infant , Male , Middle Aged , Multiple Endocrine Neoplasia/epidemiology , Multiple Endocrine Neoplasia/physiopathology , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/physiopathology , Organ Size/genetics , Phenotype , Williams Syndrome/epidemiology , Williams Syndrome/physiopathology , Young Adult
2.
Eur Neuropsychopharmacol ; 26(3): 626-30, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26727038

ABSTRACT

Dysregulation of the Mirror Neuron System (MNS) in schizophrenia (SCZ) may underlie the cognitive and behavioral manifestations of social dysfunction associated with that disorder. In healthy subjects intranasal (IN) oxytocin (OT) improves neural processing in the MNS and is associated with improved social cognition. OT's brain effects can be measured through its modulation of the MNS by suppressing EEG mu-band electrical activity (8-13Hz) in response to motion perception. Although IN OT's effects on social cognition have been tested in SCZ, OT's impact on the MNS has not been evaluated to date. Therefore, we designed a study to investigate the effects of two different OT doses on biological motion-induced mu suppression in SCZ and healthy subjects. EEG recordings were taken after each subject received a single IN administration of placebo, OT-24IU and OT-48IU in randomized order in a double-blind crossover design. The results provide support for OT's regulation of the MNS in both healthy and SCZ subjects, with the optimal dose dependent on diagnostic group and sex of subject. A statistically significant response was seen in SCZ males only, indicating a heightened sensitivity to those effects, although sex hormone related effects cannot be ruled out. In general, OT appears to have positive effects on neural circuitry that supports social cognition and socially adaptive behaviors.


Subject(s)
Antipsychotic Agents/administration & dosage , Oxytocin/administration & dosage , Oxytocin/pharmacology , Schizophrenia/drug therapy , Sensorimotor Cortex/drug effects , Social Behavior , Administration, Intranasal , Adolescent , Adult , Analysis of Variance , Antipsychotic Agents/pharmacology , Electroencephalography , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...