Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Virol ; 99(5): 676-681, 2018 05.
Article in English | MEDLINE | ID: mdl-29583115

ABSTRACT

Bocaparvoviruses are members of the family Parvovirinae and human bocaviruses have been found to be associated with respiratory and gastrointestinal disease. There are four known human bocaviruses, as well as several distinct ones in great apes. The goal of the presented study was to detect other non-human primate (NHP) bocaviruses in NHP species in the Democratic Republic of the Congo using conventional broad-range PCR. We found bocavirus DNA in blood and tissues samples in 6 out of 620 NHPs, and all isolates showed very high identity (>97 %) with human bocaviruses 2 or 3. These findings suggest cross-species transmission of bocaviruses between humans and NHPs.


Subject(s)
DNA, Viral/isolation & purification , Human bocavirus/genetics , Parvoviridae Infections/veterinary , Primates/virology , Animals , DNA, Viral/blood , Democratic Republic of the Congo , Genome, Viral , Phylogeny , Polymerase Chain Reaction
2.
Emerg Infect Dis ; 20(2): 232-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24457084

ABSTRACT

Monkeypox virus is a zoonotic virus endemic to Central Africa. Although active disease surveillance has assessed monkeypox disease prevalence and geographic range, information about virus diversity is lacking. We therefore assessed genome diversity of viruses in 60 samples obtained from humans with primary and secondary cases of infection from 2005 through 2007. We detected 4 distinct lineages and a deletion that resulted in gene loss in 10 (16.7%) samples and that seemed to correlate with human-to-human transmission (p = 0.0544). The data suggest a high frequency of spillover events from the pool of viruses in nonhuman animals, active selection through genomic destabilization and gene loss, and increased disease transmissibility and severity. The potential for accelerated adaptation to humans should be monitored through improved surveillance.


Subject(s)
Genome, Viral , Genomic Instability , Monkeypox virus/genetics , Phylogeny , Adaptation, Biological/genetics , Amino Acid Sequence , Animals , Democratic Republic of the Congo/epidemiology , Epidemiological Monitoring , Gene Deletion , Humans , Molecular Sequence Data , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/virology , Monkeypox virus/classification , Sequence Analysis, DNA , Severity of Illness Index
3.
PLoS One ; 8(7): e66071, 2013.
Article in English | MEDLINE | ID: mdl-23935820

ABSTRACT

Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4(th) Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts.


Subject(s)
Climate Change , Disease Reservoirs/virology , Monkeypox virus/physiology , Mpox (monkeypox)/virology , Animals , Cercopithecus/virology , Democratic Republic of the Congo , Ecosystem , Geography , Host-Pathogen Interactions , Humans , Models, Theoretical , Mpox (monkeypox)/transmission , Sciuridae/virology , Trees/growth & development
4.
Ecohealth ; 8(1): 14-25, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21069425

ABSTRACT

Although the incidence of human monkeypox has greatly increased in Central Africa over the last decade, resources for surveillance remain extremely limited. We conducted a geospatial analysis using existing data to better inform future surveillance efforts. Using active surveillance data collected between 2005 and 2007, we identified locations in Sankuru district, Democratic Republic of Congo (DRC) where there have been one or more cases of human monkeypox. To assess what taxa constitute the main reservoirs of monkeypox, we tested whether human cases were associated with (i) rope squirrels (Funisciurus sp.), which were implicated in monkeypox outbreaks elsewhere in the DRC in the 1980s, or (ii) terrestrial rodents in the genera Cricetomys and Graphiurus, which are believed to be monkeypox reservoirs in West Africa. Results suggest that the best predictors of human monkeypox cases are proximity to dense forests and associated habitat preferred by rope squirrels. The risk of contracting monkeypox is significantly greater near sites predicted to be habitable for squirrels (OR = 1.32; 95% CI 1.08-1.63). We recommend that semi-deciduous rainforests with oil-palm, the rope squirrel's main food source, be prioritized for monitoring.


Subject(s)
Disease Reservoirs , Mpox (monkeypox)/transmission , Remote Sensing Technology , Animals , Democratic Republic of the Congo , Disease Vectors , Humans , Monkeypox virus/isolation & purification , Population Surveillance/methods , Regression Analysis , Risk Assessment , Sciuridae/virology , Trees
5.
Proc Natl Acad Sci U S A ; 107(37): 16262-7, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-20805472

ABSTRACT

Studies on the burden of human monkeypox in the Democratic Republic of the Congo (DRC) were last conducted from 1981 to 1986. Since then, the population that is immunologically naïve to orthopoxviruses has increased significantly due to cessation of mass smallpox vaccination campaigns. To assess the current risk of infection, we analyzed human monkeypox incidence trends in a monkeypox-enzootic region. Active, population-based surveillance was conducted in nine health zones in central DRC. Epidemiologic data and biological samples were obtained from suspected cases. Cumulative incidence (per 10,000 population) and major determinants of infection were compared with data from active surveillance in similar regions from 1981 to 1986. Between November 2005 and November 2007, 760 laboratory-confirmed human monkeypox cases were identified in participating health zones. The average annual cumulative incidence across zones was 5.53 per 10,000 (2.18-14.42). Factors associated with increased risk of infection included: living in forested areas, male gender, age < 15, and no prior smallpox vaccination. Vaccinated persons had a 5.2-fold lower risk of monkeypox than unvaccinated persons (0.78 vs. 4.05 per 10,000). Comparison of active surveillance data in the same health zone from the 1980s (0.72 per 10,000) and 2006-07 (14.42 per 10,000) suggests a 20-fold increase in human monkeypox incidence. Thirty years after mass smallpox vaccination campaigns ceased, human monkeypox incidence has dramatically increased in rural DRC. Improved surveillance and epidemiological analysis is needed to better assess the public health burden and develop strategies for reducing the risk of wider spread of infection.


Subject(s)
Mpox (monkeypox)/epidemiology , Smallpox Vaccine/immunology , Smallpox/prevention & control , Adolescent , Adult , Age Distribution , Child , Child, Preschool , Climate , Democratic Republic of the Congo/epidemiology , Female , Humans , Infant , Male , Mpox (monkeypox)/immunology , Rural Health/statistics & numerical data , Smallpox/immunology , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...