Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 292(23): 9505-9522, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28385889

ABSTRACT

The human SLC28 family of concentrative nucleoside transporter (CNT) proteins has three members: hCNT1, hCNT2, and hCNT3. Na+-coupled hCNT1 and hCNT2 transport pyrimidine and purine nucleosides, respectively, whereas hCNT3 transports both pyrimidine and purine nucleosides utilizing Na+ and/or H+ electrochemical gradients. Escherichia coli CNT family member NupC resembles hCNT1 in permeant selectivity but is H+-coupled. Using heterologous expression in Xenopus oocytes and the engineered cysteine-less hCNT3 protein hCNT3(C-), substituted cysteine accessibility method analysis with the membrane-impermeant thiol reactive reagent p-chloromercuribenzene sulfonate was performed on the transport domain (interfacial helix 2, hairpin 1, putative transmembrane domain (TM) 7, and TM8), as well as TM9 of the scaffold domain of the protein. This systematic scan of the entire C-terminal half of hCNT3(C-) together with parallel studies of the transport domain of wild-type hCNT1 and the corresponding TMs of cysteine-less NupC(C-) yielded results that validate the newly developed structural homology model of CNT membrane architecture for human CNTs, revealed extended conformationally mobile regions within transport-domain TMs, identified pore-lining residues of functional importance, and provided evidence of an emerging novel elevator-type mechanism of transporter function.


Subject(s)
Membrane Transport Proteins/chemistry , Amino Acid Substitution , Animals , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutation, Missense , Protein Domains , Protein Structure, Secondary , Structural Homology, Protein , Structure-Activity Relationship , Xenopus laevis
2.
J Biol Chem ; 284(25): 17281-17292, 2009 Jun 19.
Article in English | MEDLINE | ID: mdl-19380585

ABSTRACT

The human SLC28 family of integral membrane CNT (concentrative nucleoside transporter) proteins has three members, hCNT1, hCNT2, and hCNT3. Na(+)-coupled hCNT1 and hCNT2 transport pyrimidine and purine nucleosides, respectively, whereas hCNT3 mediates transport of both pyrimidine and purine nucleosides utilizing Na(+) and/or H(+) electrochemical gradients. These and other eukaryote CNTs are currently defined by a putative 13-transmembrane helix (TM) topology model with an intracellular N terminus and a glycosylated extracellular C terminus. Recent mutagenesis studies, however, have provided evidence supporting an alternative 15-TM membrane architecture. In the absence of CNT crystal structures, valuable information can be gained about residue localization and function using substituted cysteine accessibility method analysis with thiol-reactive reagents, such as p-chloromercuribenzene sulfonate. Using heterologous expression in Xenopus oocytes and the cysteineless hCNT3 protein hCNT3C-, substituted cysteine accessibility method analysis with p-chloromercuribenzene sulfonate was performed on the TM 11-13 region, including bridging extramembranous loops. The results identified residues of functional importance and, consistent with a new revised 15-TM CNT membrane architecture, suggest a novel membrane-associated topology for a region of the protein (TM 11A) that includes the highly conserved CNT family motif (G/A)XKX(3)NEFVA(Y/M/F).


Subject(s)
Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , 4-Chloromercuribenzenesulfonate/pharmacology , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Animals , Binding Sites/genetics , Cysteine/chemistry , Female , Humans , In Vitro Techniques , Membrane Transport Proteins/genetics , Models, Molecular , Mutagenesis, Site-Directed , Nucleosides/metabolism , Oocytes/drug effects , Oocytes/metabolism , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Uridine/metabolism , Uridine/pharmacology , Xenopus laevis
3.
J Biol Chem ; 283(36): 24922-34, 2008 Sep 05.
Article in English | MEDLINE | ID: mdl-18621735

ABSTRACT

In humans, the SLC28 concentrative nucleoside transporter (CNT) protein family is represented by three Na+-coupled members; human CNT1 (hCNT1) and hCNT2 are pyrimidine and purine nucleoside-selective, respectively, whereas hCNT3 transports both purine and pyrimidine nucleosides and nucleoside drugs. Belonging to a phylogenetic CNT subfamily distinct from hCNT1/2, hCNT3 also mediates H+/nucleoside cotransport. Using heterologous expression in Xenopus oocytes, we have characterized a cysteineless version of hCNT3 (hCNT3C-). Processed normally to the cell surface, hCNT3C- exhibited hCNT3-like transport properties, but displayed a decrease in apparent affinity specific for Na+ and not H+. Site-directed mutagenesis experiments in wild-type and hCNT3C- backgrounds identified intramembranous Cys-561 as the residue responsible for this altered Na+-binding phenotype. Alanine at this position restored Na+ binding affinity, whereas substitution with larger neutral amino acids (threonine, valine, and isoleucine) abolished hCNT3 H+-dependent nucleoside transport activity. Independent of these findings, we have established that Cys-561 is located in a mobile region of the hCNT3 translocation pore adjacent to the nucleoside binding pocket and that access of p-chloromercuribenzene sulfonate to this residue reports a specific H+-induced conformational state of the protein ( Slugoski, M. D., Ng, A. M. L., Yao, S. Y. M., Smith, K. M., Lin, C. C., Zhang, J., Karpinski, E., Cass, C. E., Baldwin, S. A., and Young, J. D. (2008) J. Biol. Chem. 283, 8496-8507 ). The present investigation validates hCNT3C- as a template for substituted cysteine accessibility method studies of CNTs and reveals a pivotal functional role for Cys-561 in Na+- as well as H+-coupled modes of hCNT3 nucleoside transport.


Subject(s)
Membrane Transport Proteins/metabolism , Protons , Sodium/metabolism , Amino Acid Substitution , Animals , Binding Sites/physiology , Cysteine/genetics , Cysteine/metabolism , Female , Gene Expression , Humans , Membrane Transport Proteins/genetics , Mutagenesis, Site-Directed , Oocytes/cytology , Point Mutation , Protein Structure, Tertiary/physiology , Xenopus
4.
J Biol Chem ; 282(42): 30607-17, 2007 Oct 19.
Article in English | MEDLINE | ID: mdl-17704058

ABSTRACT

Human concentrative nucleoside transporter 1 (hCNT1), the first discovered of three human members of the SLC28 (CNT) protein family, is a Na+/nucleoside cotransporter with 650 amino acids. The potential functional roles of 10 conserved aspartate and glutamate residues in hCNT1 were investigated by site-directed mutagenesis and heterologous expression in Xenopus oocytes. Initially, each of the 10 residues was replaced by the corresponding neutral amino acid (asparagine or glutamine). Five of the resulting mutants showed unchanged Na+-dependent uridine transport activity (D172N, E338Q, E389Q, E413Q, and D565N) and were not investigated further. Three were retained in intracellular membranes (D482N, E498Q, and E532Q) and thus could not be assessed functionally. The remaining two (E308Q and E322Q) were present in normal quantities at cell surfaces but exhibited low intrinsic transport activities. Charge replacement with the alternate acidic amino acid enabled correct processing of D482E and E498D, but not of E532D, to cell surfaces and also yielded partially functional E308D and E322D. Relative to wild-type hCNT1, only D482E exhibited normal transport kinetics, whereas E308D, E308Q, E322D, E322Q, and E498D displayed increased K50(Na+) and/or Km(uridine) values and diminished Vmax(Na+) and Vmax(uridine) values. E322Q additionally exhibited uridine-gated uncoupled Na+ transport. Together, these findings demonstrate roles for Glu-308, Glu-322, and Glu-498 in Na+/nucleoside cotransport and suggest locations within a common cation/nucleoside translocation pore. Glu-322, the residue having the greatest influence on hCNT1 transport function, exhibited uridine-protected inhibition by p-chloromercuriphenyl sulfonate and 2-aminoethyl methanethiosulfonate when converted to cysteine.


Subject(s)
Amino Acids/metabolism , Cell Membrane/metabolism , Ion Channel Gating/physiology , Membrane Transport Proteins/metabolism , Uridine/metabolism , 4-Chloromercuribenzenesulfonate/pharmacology , Amino Acid Substitution , Amino Acids/chemistry , Amino Acids/genetics , Animals , Biological Transport, Active/drug effects , Biological Transport, Active/physiology , Cell Membrane/chemistry , Cell Membrane/genetics , Enzyme Inhibitors/pharmacology , Ethyl Methanesulfonate/analogs & derivatives , Ethyl Methanesulfonate/pharmacology , Humans , Indicators and Reagents/pharmacology , Ion Channel Gating/drug effects , Kinetics , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Mutagenesis, Site-Directed , Mutation, Missense , Oocytes/cytology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sodium/chemistry , Sodium/metabolism , Uridine/chemistry , Uridine/genetics , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...