Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Environ Geochem Health ; 46(3): 110, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38460044

ABSTRACT

The primary intent of the research is to comprehensively assess the environmental benefits and cost dynamics associated with the adsorption process of CS-RHA (Copper Slag and Rice Husk Ash) to produce a novel geopolymer adsorbent material for application in wastewater treatment. The geopolymer forms a polyiron sialate network under alkali activation by dissolving fayalite, and aluminium silicate to ferro-ferri silicate hydrate gel. The mechanical strength, leaching characteristics, and microstructure of the geopolymer were determined using XRD and FTIR, and magnetic properties by VSM as well surface properties were derived from BET surface area and zeta potential. Recognizing the critical role of sodium iron silicate hydrate (NFS) in the sorption of methylene blue (MB) dyestuff, batch experiments were carried out using different adsorbents. The results indicated that the dye removal efficiency increased from 60% in control samples (FS) to 98% for the blend (FS1) under different pH values. The data was found to fit with the nonlinear form of Freundlich isotherm and follow pseudo-second-order kinetics. The active adsorption sites were deduced as -O-Fe-O-Si-O-Na and Si-OH groups. The addition of RHA increases the adsorption capacity of the geopolymer in a short time through chemical adsorption. The significant negative surface charge promotes MB adsorption via improved electrostatic attraction. The spent adsorbents were recovered through magnetic separation with a retrieval rate of 80-85% and active sites were rejuvenated by calcination. Consequently, waste copper slag emerges as a promising adsorbent with minimum potential ecological risk and high effective recycling capacity.


Subject(s)
Copper , Water Pollutants, Chemical , Biomass , Silicic Acid , Recycling , Adsorption , Methylene Blue/chemistry , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry
3.
Environ Res ; 218: 115002, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36509117

ABSTRACT

To remove contaminants and pollutants from wastewater systems, adsorbents are widely used. Geopolymers offer a convenient alternative as adsorbents in the wastewater treatment system as they are low-cost, environmentally friendly, and safer. A new adsorbent material prepared by coating nano copper oxide on the surface of alkali-activated metakaolin showed a higher ability to remove methylene blue (MB) dye from wastewater, thus making them attractive in dye removal applications. First, nano copper oxide was prepared by sol gel method and metakaolin geopolymer was produced using sodium silicate solution having a Ms value of 1.1 (M). Afterwards, nano copper oxide (MC) was coated on the surface of the geopolymer. The ability of MB dye to bind to both pristine (Mp, MCp) and powder forms (Mpr, MCpr) of the geopolymer was evaluated. X-ray diffraction revealed that the halo found at 27.40°-31.077° (2θvalue) in both samples related to amorphous gel's composition and the major peaks of copper oxide in MCpr were sited at a 2θ value of 35.45° and 38.88°.The dye removal efficiency can be inferred from the increased adsorption capacity of 11.9 mg/g (Mp) and 14.4 mg/g (MCp) for the monolith form and 81.43 mg/g (Mpr) and 87.82 mg/g (MCpr) for the powder form. The adsorption of reused active sites was 73% for Mpr and 83% for MCpr up to the fifth cycle after regeneration by heat treatment at 400 °C. The models that best suited the adsorption data were pseudo-second-order and Freundlich isotherms, which indicated possible chemisorption with intra-particle diffusion. Furthermore, the binding energy is shifted to lower value in XPS spectra due to dye adsorption arising from electrostatic attraction. A higher electron density is formed due to interaction with an equal contribution of silanol Si-O-H and Si-O-Na/Cu(O1s). The adsorbents are effective over a wide pH range and their improved recycling capability increases their applications for a wide range of uses.


Subject(s)
Wastewater , Water Pollutants, Chemical , Powders , Water Pollutants, Chemical/analysis , Alkalies , Adsorption , Kinetics , Methylene Blue/chemistry , Oxides/analysis , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...