Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Res Ther ; 21(1): 206, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31511053

ABSTRACT

BACKGROUND: Osteoarthritis has been associated with a plethora of pathological factors and one which has recently emerged is chondrocyte endoplasmic reticulum (ER) stress. ER stress is sensed by key ER-resident stress sensors, one of which is activating transcription factor 6 (ATF6). The purpose of this study is to determine whether increased ER stress plays a role in OA. METHODS: OA was induced in male wild-type (+/+), ColIITgcog (c/c) and Atf6α-/- mice by destabilisation of the medial meniscus (DMM). c/c mice have increased ER stress in chondrocytes via the collagen II promoter-driven expression of ER stress-inducing Tgcog. Knee joints were scored histologically for OA severity. RNA-seq was performed on laser-micro-dissected RNA from cartilage of +/+ and c/c DMM-operated mice. RESULTS: In situ hybridisation demonstrated a correlation between the upregulation of ER stress marker, BiP, and early signs of proteoglycan loss and cartilage damage in DMM-operated +/+ mice. Histological analysis revealed a significant reduction in OA severity in c/c mice compared with +/+ at 2 weeks post-DMM. This chondroprotective effect in c/c mice was associated with a higher ambient level of BiP protein prior to DMM and a delay in chondrocyte apoptosis. RNA-seq analysis suggested Xbp1-regulated networks to be significantly enriched in c/c mice at 2 weeks post-DMM. Compromising the ER through genetically ablating Atf6α, a key ER stress sensor, had no effect on DMM-induced OA severity. CONCLUSION: Our studies indicate that an increased capacity to effectively manage increases in ER stress in articular cartilage due either to pre-conditioning as a result of prior exposure to ER stress or to genetic pre-disposition may be beneficial in delaying the onset of OA, but once established, ER stress plays no significant role in disease progression.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Osteoarthritis/metabolism , RNA/genetics , Animals , Apoptosis , Biomarkers/metabolism , Cartilage, Articular , Disease Models, Animal , Disease Progression , Gene Expression Regulation , Immunohistochemistry , Male , Mice , Osteoarthritis/genetics , Osteoarthritis/pathology
2.
J Clin Invest ; 127(10): 3861-3865, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28920921

ABSTRACT

The short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in human cell culture. Depending on the nature of the mutation, CBZ application stimulated proteolysis of misfolded collagen X by either autophagy or proteasomal degradation, thereby reducing intracellular accumulation of mutant collagen. In MCDS mice expressing the Col10a1.pN617K mutation, CBZ reduced the MCDS-associated expansion of the growth plate hypertrophic zone, attenuated enhanced expression of ER stress markers such as Bip and Atf4, increased bone growth, and reduced skeletal dysplasia. CBZ produced these beneficial effects by reducing the MCDS-associated abnormalities in hypertrophic chondrocyte differentiation. Stimulation of intracellular proteolysis using CBZ treatment may therefore be a clinically viable way of treating the ER stress-associated dwarfism MCDS.


Subject(s)
Carbamazepine/pharmacology , Chondrocytes/metabolism , Collagen Type X/biosynthesis , Dwarfism/metabolism , Endoplasmic Reticulum Stress , Mutation , Proteolysis , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Animals , Chondrocytes/pathology , Collagen Type X/genetics , Dwarfism/genetics , Dwarfism/pathology , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Mice
3.
PLoS Genet ; 11(9): e1005505, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26372225

ABSTRACT

Schmid metaphyseal chondrodysplasia (MCDS) involves dwarfism and growth plate cartilage hypertrophic zone expansion resulting from dominant mutations in the hypertrophic zone collagen, Col10a1. Mouse models phenocopying MCDS through the expression of an exogenous misfolding protein in the endoplasmic reticulum (ER) in hypertrophic chondrocytes have demonstrated the central importance of ER stress in the pathology of MCDS. The resultant unfolded protein response (UPR) in affected chondrocytes involved activation of canonical ER stress sensors, IRE1, ATF6, and PERK with the downstream effect of disrupted chondrocyte differentiation. Here, we investigated the role of the highly conserved IRE1/XBP1 pathway in the pathology of MCDS. Mice with a MCDS collagen X p.N617K knock-in mutation (ColXN617K) were crossed with mice in which Xbp1 was inactivated specifically in cartilage (Xbp1CartΔEx2), generating the compound mutant, C/X. The severity of dwarfism and hypertrophic zone expansion in C/X did not differ significantly from ColXN617K, revealing surprising redundancy for the IRE1/XBP1 UPR pathway in the pathology of MCDS. Transcriptomic analyses of hypertrophic zone cartilage identified differentially expressed gene cohorts in MCDS that are pathologically relevant (XBP1-independent) or pathologically redundant (XBP1-dependent). XBP1-independent gene expression changes included large-scale transcriptional attenuation of genes encoding secreted proteins and disrupted differentiation from proliferative to hypertrophic chondrocytes. Moreover, these changes were consistent with disruption of C/EBP-ß, a master regulator of chondrocyte differentiation, by CHOP, a transcription factor downstream of PERK that inhibits C/EBP proteins, and down-regulation of C/EBP-ß transcriptional co-factors, GADD45-ß and RUNX2. Thus we propose that the pathology of MCDS is underpinned by XBP1 independent UPR-induced dysregulation of C/EBP-ß-mediated chondrocyte differentiation. Our data suggest that modulation of C/EBP-ß activity in MCDS chondrocytes may offer therapeutic opportunities.


Subject(s)
Bone Diseases/pathology , CCAAT-Enhancer-Binding Protein-beta/antagonists & inhibitors , Cell Differentiation/physiology , Chondrocytes/pathology , DNA-Binding Proteins/physiology , Endoplasmic Reticulum Stress/physiology , Transcription Factors/physiology , Unfolded Protein Response/physiology , Animals , CCAAT-Enhancer-Binding Protein-beta/physiology , DNA-Binding Proteins/genetics , Gene Expression Profiling , Mice , Mice, Transgenic , Regulatory Factor X Transcription Factors , Transcription Factors/genetics , X-Box Binding Protein 1
4.
Hum Mol Genet ; 22(25): 5262-75, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-23956175

ABSTRACT

Mutant matrilin-3 (V194D) forms non-native disulphide bonded aggregates in the rER of chondrocytes from cell and mouse models of multiple epiphyseal dysplasia (MED). Intracellular retention of mutant matrilin-3 causes endoplasmic reticulum (ER) stress and induces an unfolded protein response (UPR) including the upregulation of two genes recently implicated in ER stress: Armet and Creld2. Nothing is known about the role of Armet and Creld2 in human genetic diseases. In this study, we used a variety of cell and mouse models of chondrodysplasia to determine the genotype-specific expression profiles of Armet and Creld2. We also studied their interactions with various mutant proteins and investigated their potential roles as protein disulphide isomerases (PDIs). Armet and Creld2 were up-regulated in cell and/or mouse models of chondrodysplasias caused by mutations in Matn3 and Col10a1, but not Comp. Intriguingly, both Armet and Creld2 were also secreted into the ECM of these disease models following ER stress. Armet and Creld2 interacted with mutant matrilin-3, but not with COMP, thereby validating the genotype-specific expression. Substrate-trapping experiments confirmed Creld2 processed PDI-like activity, thus identifying a putative functional role. Finally, alanine substitution of the two terminal cysteine residues from the A-domain of V194D matrilin-3 prevented aggregation, promoted mutant protein secretion and reduced the levels of Armet and Creld2 in a cell culture model. We demonstrate that Armet and Creld2 are genotype-specific ER stress response proteins with substrate specificities, and that aggregation of mutant matrilin-3 is a key disease trigger in MED that could be exploited as a potential therapeutic target.


Subject(s)
Cell Adhesion Molecules/genetics , Endoplasmic Reticulum Stress/genetics , Extracellular Matrix Proteins/genetics , Nerve Growth Factors/genetics , Osteochondrodysplasias/genetics , Animals , Apoptosis/genetics , Chondrocytes/metabolism , Collagen Type X/genetics , Disease Models, Animal , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Gene Expression Regulation , Humans , Matrilin Proteins/genetics , Mice , Osteochondrodysplasias/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...