Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 151(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38205939

ABSTRACT

Asymmetric cell divisions often generate daughter cells of unequal size in addition to different fates. In some contexts, daughter cell size asymmetry is thought to be a key input to specific binary cell fate decisions. An alternative possibility is that unequal division is a mechanism by which a variety of cells of different sizes are generated during embryonic development. We show here that two unequal cell divisions precede neuroblast formation in the C lineage of Caenorhabditis elegans. The equalisation of these divisions in a pig-1/MELK mutant background has little effect on neuroblast specification. Instead, we demonstrate that let-19/MDT13 is a regulator of the proneural basic helix-loop-helix transcription factor hlh-14/ASCL1 and find that both are required to concomitantly regulate the acquisition of neuroblast identity and neuroblast cell size. Thus, embryonic neuroblast cell size in this lineage is progressively regulated in parallel with identity by key neural cell fate regulators. We propose that key cell fate determinants have a previously unappreciated function in regulating unequal cleavage, and therefore cell size, of the progenitor cells whose daughter cell fates they then go on to specify.


Subject(s)
Caenorhabditis elegans Proteins , Neural Stem Cells , Animals , Caenorhabditis elegans Proteins/genetics , Neurons , Caenorhabditis elegans , Cell Division , Cell Size
2.
Dev Biol ; 461(1): 31-42, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31923384

ABSTRACT

Strikingly, epithelial morphogenesis remains incomplete at the end of C. elegans embryonic development; newly hatched larvae undergo extensive remodelling of their ventral epidermis during the first larval stage (L1), when newly-born epidermal cells move ventrally to complete the epidermal syncytium. Prior to this remodelling, undivided lateral seam cells produce anterior adherens junction processes that are inherited by the anterior daughter cells following an asymmetric division during L1. These adherens junction processes provide the ventral migratory route for these anterior daughters. Here, we show that these processes are perturbed in pal-1/caudal mutant animals, resulting in their inheritance by posterior, seam-fated daughters. This causes aberrant migration of seam daughter cells, disrupting the ventral epidermis. Using 4D-lineaging, we demonstrate that this larval epidermal morphogenesis defect in pal-1 mutants can be traced directly back to an initial cell positioning defect in the embryo. pal-1 expression, driven by a single intronic enhancer, is required to correctly position the seam cells in embryos such that the appropriate cell junctions support the correct migratory paths of seam daughters later in development, irrespective of their fate. Thus, during ventral epithelial remodelling in C. elegans, we show that the position of migrating cells, specified by pal-1/caudal, appears to be more important than their fate in driving morphogenesis.


Subject(s)
Body Patterning/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/embryology , Epidermis/embryology , Homeodomain Proteins/genetics , Trans-Activators/genetics , Adherens Junctions/physiology , Animals , Body Patterning/genetics , Cell Movement , Embryonic Development/genetics , Embryonic Development/physiology , Epidermal Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...