Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 1928, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253799

ABSTRACT

High-quality epitaxial p-type V2O3 thin films have been synthesized by spray pyrolysis. The films exhibited excellent electrical performance, with measurable mobility and high carrier concentration. The conductivity of the films varied between 115 and 1079 Scm-1 while the optical transparency of the films ranged from 32 to 65% in the visible region. The observed limitations in thinner films' mobility were attributed to the nanosized granular structure and the presence of two preferred growth orientations. The 60 nm thick V2O3 film demonstrated a highly competitive transparency-conductivity figure of merit compared to the state-of-the-art.

2.
Materials (Basel) ; 15(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36363246

ABSTRACT

The strongly correlated electron material, vanadium dioxide (VO2), has seen considerable attention and research application in metal-oxide electronics due to its metal-to-insulator transition close to room temperature. Vacuum annealing a V2O5(010) single crystal results in Wadsley phases (VnO2n+1, n > 1) and VO2. The resistance changes by a factor of 20 at 342 K, corresponding to the metal-to-insulator phase transition of VO2. Macroscopic voltage-current measurements with a probe separation on the millimetre scale result in Joule heating-induced resistive switching at extremely low voltages of under a volt. This can reduce the hysteresis and facilitate low temperature operation of VO2 devices, of potential benefit for switching speed and device stability. This is correlated to the low resistance of the system at temperatures below the transition. High-resolution transmission electron microscopy measurements reveal a complex structural relationship between V2O5, VO2 and V6O13 crystallites. Percolation paths incorporating both VO2 and metallic V6O13 are revealed, which can reduce the resistance below the transition and result in exceptionally low voltage resistive switching.

3.
J Hazard Mater ; 425: 127997, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34986566

ABSTRACT

Microplastic (MP) release from household plastic products has become a global concern due to the high recorded levels of microplastic and the direct risk of human exposure. However, the most widely used MP measurement protocol, which involves the use of deionized (DI) water, fails to account for the ions and particles present in real drinking water. In this paper, the influence of typical ions (Ca2+/HCO3-, Fe3+, Cu2+) and particles (Fe2O3 particles) on MP release was systematically investigated by conducting a 100-day study using plastic kettles. Surprisingly, after 40 days, all ions resulted in a greater than 89.0% reduction in MP release while Fe2O3 particles showed no significant effect compared to the DI water control. The MP reduction efficiency ranking is Fe3+ ≈ Cu2+ > Ca2+/HCO3- > > Fe2O3 particles ≈ DI water. Physical and chemical characterization using SEM-EDX, AFM, XPS and Raman spectroscopy confirmed Ca2+/HCO3-, Cu2+ and Fe3+ ions are transformed into passivating films of CaCO3, CuO, and Fe2O3, respectively, which are barriers to MP release. In contrast, there was no film formed when the plastic was exposed to Fe2O3 particles. Studies also confirmed that films with different chemical compositions form naturally in kettles during real life due to the different ions present in local regional water supplies. All films identified in this study can substantially reduce the levels of MP release while withstanding the repeated adverse conditions associated with daily use. This study underscores the potential for regional variations in human MP exposure due to the substantial impact water constituents have on the formation of passivating film formation and the subsequent release of MPs.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Environmental Monitoring , Humans , Microplastics , Plastics , Water Pollutants, Chemical/analysis
4.
Nanotechnology ; 31(37): 375601, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32498057

ABSTRACT

The synthesis of transition metal dichalcogenides (TMDs) has been a primary focus for 2D nanomaterial research over the last 10 years, however, only a small fraction of this research has been concentrated on transition metal ditellurides. In particular, nanoscale platinum ditelluride (PtTe2) has rarely been investigated, despite its potential applications in catalysis, photonics and spintronics. Of the reports published, the majority examine mechanically-exfoliated flakes from chemical vapor transport (CVT) grown crystals. This method produces high quality-crystals, ideal for fundamental studies. However, it is very resource intensive and difficult to scale up meaning there are significant obstacles to implementation in large-scale applications. In this report, the synthesis of thin films of PtTe2 through the reaction of solid-phase precursor films is described. This offers a production method for large-area, thickness-controlled PtTe2, potentially suitable for a number of applications. These polycrystalline PtTe2 films were grown at temperatures as low as 450 °C, significantly below the typical temperatures used in the CVT synthesis methods. Adjusting the growth parameters allowed the surface coverage and morphology of the films to be controlled. Analysis with scanning electron- and scanning tunneling microscopy indicated grain sizes of above 1 µm could be achieved, comparing favorably with typical values of ∼50 nm for polycrystalline films. To investigate their potential applicability, these films were examined as electrocatalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The films showed promising catalytic behavior, however, the PtTe2 was found to undergo chemical transformation to a substoichiometric chalcogenide compound under ORR conditions. This study shows while PtTe2 is stable and highly useful for in HER, this property does not apply to ORR, which undergoes a fundamentally different mechanism. This study broadens our knowledge on the electrocatalysis of TMDs.

5.
Materials (Basel) ; 10(9)2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28862695

ABSTRACT

Screening for potential new materials with experimental and theoretical methods has led to the discovery of many promising candidate materials for p-type transparent conducting oxides. It is difficult to reliably assess a good p-type transparent conducting oxide (TCO) from limited information available at an early experimental stage. In this paper we discuss the influence of sample thickness on simple transmission measurements and how the sample thickness can skew the commonly used figure of merit of TCOs and their estimated band gap. We discuss this using copper-deficient CuCrO 2 as an example, as it was already shown to be a good p-type TCO grown at low temperatures. We outline a modified figure of merit reducing thickness-dependent errors, as well as how modern ab initio screening methods can be used to augment experimental methods to assess new materials for potential applications as p-type TCOs, p-channel transparent thin film transistors, and selective contacts in solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...