Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Macromolecules ; 45(12): 5316-5320, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-23180887

ABSTRACT

Poly(amidoamine) (PAMAM) dendrimer are branched polymers with low degrees of heterogeneity. Current synthesis methods, however, result in substantial batch variability. We present our optimized procedure for post-synthesis (and post-market) purification of a generation 5 PAMAM dendrimer by membrane dialysis and demonstrate its effectiveness and limitations using a representative lot of biomedical grade dendrimer. This method successfully removes trailing generation defect structures, thereby reducing the heterogeneity of the material (PDI reduced from 1.04 to 1.02). Optimized analytical techniques to characterize the unpurified and purified dendrimer are also detailed. The efficiency of the purification method is successfully monitored by these analytics and dendrimer parameters that are critical for subsequent modification reactions and biological evaluation (M(n), M(w), PDI, average number of end groups) obtained. To provide better definition of the variability that should be expected between lots of synthesized material, HPLC traces for three additional commercial lots of dendrimer are also presented.

2.
Acc Chem Res ; 44(11): 1135-45, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21812474

ABSTRACT

Nanoparticles conjugated with functional ligands are expected to have a major impact in medicine, photonics, sensing, and nanoarchitecture design. One major obstacle to realizing the promise of these materials, however, is the difficulty in controlling the ligand/nanoparticle ratio. This obstacle can be segmented into three key areas: First, many designs of these systems have failed to account for the true heterogeneity of ligand/nanoparticle ratios that compose each material. Second, studies in the field often use the mean ligand/nanoparticle ratio as the accepted level of characterization of these materials. This measure is insufficient because it does not provide information about the distribution of ligand/nanoparticle species within a sample or the number and relative amount of the different species that compose a material. Without these data, researchers do not have an accurate definition of material composition necessary both to understand the material-property relationships and to monitor the consistency of the material. Third, some synthetic approaches now in use may not produce consistent materials because of their sensitivity to reaction kinetics and to the synthetic history of the nanoparticle. In this Account, we describe recent advances that we have made in under standing the material composition of ligand-nanoparticle systems. Our work has been enabled by a model system using poly(amidoamine) dendrimers and two small molecule ligands. Using reverse phase high-pressure liquid chromatography (HPLC), we have successfully resolved and quantified the relative amounts and ratios of each ligand/dendrimer combination. This type of information is rare within the field of ligand-nanoparticle materials because most analytical techniques have been unable to identify the components in the distribution. Our experimental data indicate that the actual distribution of ligand-nanoparticle components is much more heterogeneous than is commonly assumed. The mean ligand/nanoparticle ratio that is typically the only information known about a material is insufficient because the mean does not provide information on the diversity of components in the material and often does not describe the most common component (the mode). Additionally, our experimental data has provided examples of material batches with the same mean ligand/nanoparticle ratio and very different distributions. This discrepancy indicates that the mean cannot be used as the sole metric to assess the reproducibility of a system. We further found that distribution profiles can be highly sensitive to the synthetic history of the starting material as well as slight changes in reaction conditions. We have incorporated the lessons from our experimental data into the design of new ligand-nanoparticle systems to provide improved control over these ratios.


Subject(s)
Chromatography, Reverse-Phase/methods , Dendrimers , Ligands , Nanoparticles/chemistry , Nanotechnology/methods , Alkynes/chemistry , Azides/chemistry , Dendrimers/analysis , Dendrimers/chemistry , Phenylpropionates/chemistry , Poisson Distribution , Reproducibility of Results
3.
Anal Methods ; 3(1): 56-58, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21572563

ABSTRACT

Acetonitrile is a choice of solvent for almost all chromatographic separations. In recent years, researchers around the globe have faced an acetonitrile shortage that affected routine analytical operations. Researchers have tried to counter this shortage by applying many innovative solutions, including using ultra performance liquid chromatography (UPLC) columns that are shorter and smaller in diameter than traditional high performance liquid chromatography (HPLC) columns, thus significantly decreasing the volume of eluent required. Although utilizing UPLC in place of HPLC can alleviate the solvent demand to some extent, acetonitrile is generally thought of as the solvent of choice due to its versatility. In the following communication, we describe an alternative eluent system that uses isopropanol in place of acetonitrile as an organic modifier for routine chromatographic separations. We report here the development of an isopropanol based UPLC protocol for G5 PAMAM dendrimer based conjugates that was transferred to semi-preparative applications.

4.
Bioconjug Chem ; 22(4): 679-89, 2011 Apr 20.
Article in English | MEDLINE | ID: mdl-21425790

ABSTRACT

A modular dendrimer-based drug delivery platform was designed to improve upon existing limitations in single dendrimer systems. Using this modular strategy, a biologically active platform containing receptor mediated targeting and fluorescence imaging modules was synthesized by coupling a folic acid (FA) conjugated dendrimer with a fluorescein isothiocyanate (FITC) conjugated dendrimer. The two different dendrimer modules were coupled via the 1,3-dipolar cycloaddition reaction ("click" chemistry) between an alkyne moiety on the surface of the first dendrimer and an azide moiety on the second dendrimer. Two simplified model systems were also synthesized to develop appropriate "click" reaction conditions and aid in spectroscopic assignments. Conjugates were characterized by (1)H NMR spectroscopy and NOESY. The FA-FITC modular platform was evaluated in vitro with a human epithelial cancer cell line (KB) and found to specifically target the overexpressed folic acid receptor.


Subject(s)
Dendrimers/metabolism , Drug Carriers/metabolism , Drug Delivery Systems , Drug Design , Folate Receptors, GPI-Anchored/analysis , Folic Acid/metabolism , Click Chemistry , Dendrimers/chemical synthesis , Dendrimers/chemistry , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Fluorescent Dyes/chemistry , Folate Receptors, GPI-Anchored/biosynthesis , Folic Acid/chemistry , Humans , Isothiocyanates/chemistry , KB Cells , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Surface Properties , Tumor Cells, Cultured
6.
J Am Chem Soc ; 132(23): 8087-97, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-20481633

ABSTRACT

Poly(amidoamine) (PAMAM) dendrimer nanobiotechnology shows great promise in targeted drug delivery and gene therapy. Because of the involvement of cell membrane lipids with the pharmacological activity of dendrimer nanomedicines, the interactions between dendrimers and lipids are of particular relevance to the pharmaceutical applications of dendrimers. In this study, solid-state NMR was used to obtain a molecular image of the complex of generation-5 (G5) PAMAM dendrimer with the lipid bilayer. Using (1)H radio frequency driven dipolar recoupling (RFDR) and (1)H magic angle spinning (MAS) nuclear Overhauser effect spectroscopy (NOESY) techniques, we show that dendrimers are thermodynamically stable when inserted into zwitterionic lipid bilayers. (14)N and (31)P NMR experiments on static samples and measurements of the mobility of C-H bonds using a 2D proton detected local field protocol under MAS corroborate these results. The localization of dendrimers in the hydrophobic core of lipid bilayers restricts the motion of bilayer lipid tails, with the smaller G5 dendrimer having more of an effect than the larger G7 dendrimer. Fragmentation of the membrane does not occur at low dendrimer concentrations in zwitterionic membranes. Because these results show that the amphipathic dendrimer molecule can be stably incorporated in the interior of the bilayer (as opposed to electrostatic binding at the surface), they are expected to be useful in the design of dendrimer-based nanobiotechnologies.


Subject(s)
Cell Membrane/metabolism , Dendrimers/metabolism , Hydrophobic and Hydrophilic Interactions , Cell Membrane/chemistry , Dendrimers/chemistry , Dimyristoylphosphatidylcholine/metabolism , Drug Carriers/chemistry , Drug Carriers/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Magnetic Resonance Spectroscopy , Membranes, Artificial
7.
Mol Pharm ; 7(3): 870-83, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20349965

ABSTRACT

Polycationic materials commonly used to delivery DNA to cells are known to induce cell membrane porosity in a charge-density dependent manner. It has been suggested that these pores may provide a mode of entry of the polymer-DNA complexes (polyplexes) into cells. To examine the correlation between membrane permeability and biological activity, we used two-color flow cytometry on two mammalian cell lines to simultaneously measure gene expression of a plasmid DNA delivered with four common nonviral vectors and cellular uptake of normally excluded fluorescent dye molecules of two different sizes, 668 Da and 2 MDa. We also followed gene expression in cells sorted based on the retention of endogenous fluorescein. We have found that cell membrane porosity caused by polycationic vectors does not enhance internalization or gene expression. Based on this single-cell study, membrane permeability is found to be an unwanted side effect that limits transfection efficiency, possibly through leakage of the delivered nucleic acid through the pores prior to transcription and translation and/or activation of cell defense mechanisms that restrict transgene expression.


Subject(s)
Cell Membrane Permeability/drug effects , DNA/genetics , Polyamines/pharmacology , Animals , COS Cells , Cell Line, Tumor , Cell Survival/drug effects , Chlorocebus aethiops , DNA/chemistry , Dendrimers/adverse effects , Dendrimers/chemistry , Flow Cytometry , Genetic Vectors/adverse effects , Genetic Vectors/chemistry , Humans , Models, Theoretical , Polyelectrolytes , Transfection
8.
ACS Nano ; 4(2): 657-70, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20131876

ABSTRACT

Functional nanoparticles often contain ligands including targeting molecules, fluorophores, and/or active moieties such as drugs. Characterizing the number of these ligands bound to each particle and the distribution of nanoparticle-ligand species is important for understanding the nanomaterial's function. In this study, the amide coupling methods commonly used to conjugate ligands to poly(amidoamine) (PAMAM) dendrimers were examined. A skewed Poisson distribution was observed and quantified using HPLC for two sets of dendrimer-ligand samples prepared using the amine-terminated form of the PAMAM dendrimer and a partially acetylated form of the PAMAM dendrimer that has been used for targeted in vivo drug delivery. The prepared samples had an average number of ligands per dendrimer ranging from 0.4 to 13. Distributions identified by HPLC are in excellent agreement with the mean ligand/dendrimer ratio, measured by (1)H NMR, gel permeation chromatography (GPC), and potentiometric titration. These results provide insight into the heterogeneity of distributions that are obtained for many classes of nanomaterials to which ligands are conjugated and belie the use of simple cartoon models that present the "average" number of ligands bound as a physically meaningful representation for the material.


Subject(s)
Dendrimers/chemistry , Drug Carriers/chemistry , Molecular Imaging , Nanoparticles/chemistry , Alkynes/chemistry , Chromatography, Gel , Ligands , Magnetic Resonance Spectroscopy , Potentiometry
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(3 Pt 2): 036108, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21230140

ABSTRACT

Nanoparticles with multiple ligands have been proposed for use in nanomedicine. The multiple targeting ligands on each nanoparticle can bind to several locations on a cell surface facilitating both drug targeting and uptake. Experiments show that the distribution of conjugated ligands is unexpectedly broad, and the desorption rate appears to depend exponentially upon the mean number of attached ligands. These two findings are explained with a model in which ligands conjugate to the nanoparticle with a positive cooperativity of ≈4 kT , and that nanoparticles bound to a surface by multiple bonds are permanently affixed. This drives new analysis of the data, which confirms that there is only one time constant for desorption, that of a nanoparticle bound to the surface by a single bond.


Subject(s)
Dendrimers/metabolism , Models, Biological , Neoplasms/metabolism , Neoplasms/pathology , Acetylation , Dendrimers/chemistry , Ligands , Nanomedicine , Surface Plasmon Resonance , Surface Properties , Thermodynamics
10.
Macromolecules ; 43(16): 6577-6587, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-21412444

ABSTRACT

Partial acetylation of the amine-terminated poly(amidoamine) dendrimer has been used in the preparation of dendrimer particles conjugated with a wide variety of functional ligands including targeting moieties, therapeutic agents, and dye molecules. The effectiveness of mass transport during the partial acetylation reaction was found to have a major effect on subsequent distributions of dendrimer-ligand components and to be a major source of inconsistency between batches. This study has broad implications for a wide range of nanoparticle-ligand systems because it demonstrates that conjugates with the same mean ligand-particle ratios can have completely different distribution profiles.

11.
Mol Pharm ; 7(1): 267-79, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20025295

ABSTRACT

The GM1/caveolin-1 lipid raft mediated endocytosis mechanism was explored for generation 5 and 7 poly(amidoamine) dendrimer polyplexes employing the Cos-7, 293A, C6, HeLa, KB, and HepG2 cell lines. Expression levels of GM1 and caveolin-1 were measured using dot blot and Western blot, respectively. The level of GM1 in the cell plasma membrane was adjusted by incubation with exogenous GM1 or ganglioside inhibitor PPMP, and the level of CAV-1 was adjusted by upregulation with the adenovirus vector expressed caveolin-1 (AdCav-1). Cholera toxin B subunit was employed as a positive control for uptake in all cases. No evidence was found for a GM1/caveolin-1 lipid raft mediated endocytosis mechanism for the generation 5 and 7 poly(amidoamine) dendrimer polyplexes.


Subject(s)
Caveolin 1/metabolism , Dendrimers/administration & dosage , Dendrimers/pharmacokinetics , Endocytosis/physiology , G(M1) Ganglioside/metabolism , Membrane Microdomains/metabolism , Adenoviruses, Human/genetics , Animals , COS Cells , Caveolin 1/genetics , Cell Line , Chlorocebus aethiops , Drug Delivery Systems , Endocytosis/drug effects , Genetic Vectors , HeLa Cells , Humans , Meperidine/analogs & derivatives , Meperidine/pharmacology , Transfection
12.
J Phys Chem B ; 113(32): 11179-85, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19606833

ABSTRACT

It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper, we show that noncytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A (human embryonic kidney) and KB (human epidermoid carcinoma) cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm(2) in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer, are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1-100 ms, while membrane resealing may occur over tens of seconds. Patch-clamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for an amphiphilic phenylene ethynylene antimicrobial oligomer (AMO-3), a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making approximately 3 nm holes in living cell membranes.


Subject(s)
Cations , Cell Membrane/metabolism , Nanoparticles , Cell Line , Humans , Nanotechnology
13.
Bioconjug Chem ; 20(8): 1503-13, 2009 Aug 19.
Article in English | MEDLINE | ID: mdl-19583240

ABSTRACT

Generation 7 (G7) poly(amidoamine) (PAMAM) dendrimers with amine, acetamide, and carboxylate end groups were prepared to investigate polymer/cell membrane interactions in vitro. G7 PAMAM dendrimers were used in this study because higher-generation of dendrimers are more effective in permeabilization of cell plasma membranes and in the formation of nanoscale holes in supported lipid bilayers than smaller, lower-generation dendrimers. Dendrimer-based conjugates were characterized by (1)H NMR, UV/vis spectroscopy, GPC, HPLC, and CE. Positively charged amine-terminated G7 dendrimers (G7-NH(2)) were observed to internalize into KB, Rat2, and C6 cells at a 200 nM concentration. By way of contrast, neither negatively charged G7 carboxylate-terminated dendrimers (G7-COOH) nor neutral acetamide-terminated G7 dendrimers (G7-Ac) associated with the cell plasma membrane or internalized under similar conditions. A series of in vitro experiments employing endocytic markers cholera toxin subunit B (CTB), transferrin, and GM(1)-pyrene were performed to further investigate mechanisms of dendrimer internalization into cells. G7-NH(2) dendrimers colocalized with CTB; however, experiments with C6 cells indicated that internalization of G7-NH(2) was not ganglioside GM(1) dependent. The G7/CTB colocalization was thus ascribed to an artifact of direct interaction between the two species. The presence of GM(1) in the membrane also had no effect upon XTT assays of cell viability or lactate dehydrogenase (LDH) assays of membrane permeability.


Subject(s)
Cell Membrane/metabolism , Dendrimers/metabolism , G(M1) Ganglioside/metabolism , Lipid Bilayers/metabolism , Polyamines/metabolism , Animals , Cell Line , Cell Membrane/drug effects , Cell Survival/drug effects , Dendrimers/chemistry , Dose-Response Relationship, Drug , G(M1) Ganglioside/chemistry , G(M1) Ganglioside/pharmacology , Humans , KB Cells , Models, Biological , Molecular Structure , Polyamines/chemistry , Rats , Surface Properties
14.
ACS Nano ; 3(7): 1886-96, 2009 Jul 28.
Article in English | MEDLINE | ID: mdl-19534489

ABSTRACT

The energetics, stoichiometry, and structure of poly(amidoamine) (PAMAM) dendrimer-phospholipid interactions were measured with isothermal titration calorimetry (ITC), transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and molecular dynamics (MD) simulations. Dendrimers of sixth-generation and smaller interacted with the lipids at an average stoichiometry and enthalpy proportional to the number of primary amines per dendrimers (4.5 ± 0.1 lipids/primary amine and 6.3 ± 0.3 kJ/mol of primary amines, respectively). Larger dendrimers, however, demonstrated a decreased number of bound lipids and heat release per primary amine, presumably due to the steric restriction of dendrimer deformation on the lipid bilayer. For example, eighth-generation PAMAM dendrimers bound to 44% fewer lipids per primary amine and released 63% less heat per primary amine as compared to the smaller dendrimers. These differences in binding stoichiometry support generation-dependent models for dendrimer-lipid complexation, which are consistent with previously observed generation-dependent differences in dendrimer-induced membrane disruption. Dendrimers of seventh-generation and larger bound to lipids with an average stoichiometry consistent with each dendrimer having been wrapped by a bilayer of lipids, whereas smaller dendrimers did not.

15.
Bioconjug Chem ; 20(10): 1853-9, 2009 Oct 21.
Article in English | MEDLINE | ID: mdl-20711425

ABSTRACT

Poly(amidoamine) (PAMAM) dendrons were synthesized with c(RGDyK) peptide on the surface to create a scaffold for cellular targeting and multivalent binding. Binary dendron-RGD conjugates were synthesized with a single Alexa Fluor 488, biotin, methotrexate drug molecule, or additional functionalized dendron at the focal point. The targeted dendron platform was shown to specifically target αvß3 integrin expressing human umbilical vein endothelial cells (HUVEC) and human glioblastoma cells (U87MG) in Vitro via flow cytometry. Specific targeting of the dendron-RGD platform was further confirmed by confocal microscopy. Biological activity of the targeted drug conjugate was confirmed via XTT assay. The orthogonal reaction chemistry used at the dendron focal point gives a precise 1:1 ratio of the attachment of multiple functionalities to a small-molecular-weight, chemically stable, high avidity molecule. These studies serve as a framework to selectively combine biologically relevant functions with enhanced specific binding activity to substitute for antibodies in many diagnostic and therapeutic applications.


Subject(s)
Biocompatible Materials , Dendrimers , Fluorescent Dyes/metabolism , Integrin alphaVbeta3/metabolism , Molecular Probes , Antibodies/chemistry , Antibodies/pharmacology , Binding Sites, Antibody , Biocompatible Materials/chemical synthesis , Biocompatible Materials/metabolism , Cell Line, Tumor , Dendrimers/chemical synthesis , Dendrimers/metabolism , Drug Delivery Systems/methods , Endothelial Cells/chemistry , Endothelial Cells/drug effects , Endothelial Cells/immunology , Fluorescent Dyes/chemical synthesis , Glioblastoma/chemistry , Glioblastoma/immunology , Glioblastoma/metabolism , Glioblastoma/therapy , Humans , Molecular Probes/chemical synthesis , Molecular Probes/metabolism , Molecular Targeted Therapy
16.
Langmuir ; 24(19): 11003-8, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18763817

ABSTRACT

The interaction of generation 5 (G5) and 7 (G7) poly(amidoamine) (PAMAM) dendrimers with mica-supported Survanta bilayers is studied with atomic force microscopy (AFM). In these experiments, Survanta forms distinct gel and fluid domains with differing lipid composition. Nanoscale defects are induced by the PAMAM dendrimers. The positively charged dendrimers remove lipid from the fluid domains at a significantly greater rate than for the gel domains. Dendrimer accumulation on lipid edges and terraces preceding lipid removal has been directly imaged. Immediately following lipid removal, the mica surface is clean, indicating that lipid defects are not induced by dendrimers binding to the mica substrate and displacing the lipid.


Subject(s)
Biological Products/chemistry , Dendrimers/chemistry , Lipids/chemistry , Polyamines/chemistry , Pulmonary Surfactants/chemistry , Fatty Acids/chemistry , Microscopy, Atomic Force , Models, Chemical , Molecular Structure , Proteins/chemistry
17.
Bioconjug Chem ; 19(9): 1748-52, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18729391

ABSTRACT

Stochastic synthesis of a ligand coupled to a nanoparticle results in a distribution of populations with different numbers of ligands per nanoparticle. This distribution was resolved and quantified using HPLC and is in excellent agreement with the ligand/nanoparticle average measured by 1H NMR, gel permeation chromatography (GPC), and potentiometric titration, and yet significantly more disperse than commonly held perceptions of monodispersity. Two statistical models were employed to confirm that the observed heterogeneity is consistent with theoretical expectations.


Subject(s)
Dendrimers/chemical synthesis , Nanoparticles/chemistry , Polyamines/chemical synthesis , Stochastic Processes , Acetylation , Chromatography, Gel , Chromatography, High Pressure Liquid , Electrochemistry , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...