Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nucl Med ; 58(8): 1270-1277, 2017 08.
Article in English | MEDLINE | ID: mdl-28408532

ABSTRACT

The clinical impact and accessibility of 68Ga tracers for the prostate-specific membrane antigen (PSMA) and other targets would be greatly enhanced by the availability of a simple, 1-step kit-based labeling process. Radiopharmacy staff are accustomed to such procedures in the daily preparation of 99mTc radiopharmaceuticals. Currently, chelating agents used in 68Ga radiopharmaceuticals do not meet this ideal. The aim of this study was to develop and evaluate preclinically a 68Ga radiotracer for imaging PSMA expression that could be radiolabeled simply by addition of 68Ga generator eluate to a cold kit. Methods: A conjugate of a tris(hydroxypyridinone) (THP) chelator with the established urea-based PSMA inhibitor was synthesized and radiolabeled with 68Ga by adding generator eluate directly to a vial containing the cold precursors THP-PSMA and sodium bicarbonate, with no further manipulation. It was analyzed after 5 min by instant thin-layer chromatography and high-performance liquid chromatography. The product was subjected to in vitro studies to determine PSMA affinity using PSMA-expressing DU145-PSMA cells, with their nonexpressing analog DU145 as a control. In vivo PET imaging and ex vivo biodistribution studies were performed in mice bearing xenografts of the same cell lines, comparing 68Ga-THP-PSMA with 68Ga-HBED-CC-PSMA. Results: Radiolabeling was complete (>95%) within 5 min at room temperature, showing a single radioactive species by high-performance liquid chromatography that was stable in human serum for more than 6 h and showed specific binding to PSMA-expressing cells (concentration giving 50% inhibition of 361 ± 60 nM). In vivo PET imaging showed specific uptake in PSMA-expressing tumors, reaching 5.6 ± 1.2 percentage injected dose per cubic centimeter at 40-60 min and rapid clearance from blood to kidney and bladder. The tumor uptake, biodistribution, and pharmacokinetics were not significantly different from those of 68Ga-HBED-CC-PSMA except for reduced uptake in the spleen. Conclusion:68Ga-THP-PSMA has equivalent imaging properties but greatly simplified radiolabeling compared with other 68Ga-PSMA conjugates. THP offers the prospect of rapid, simple, 1-step, room-temperature syringe-and-vial radiolabeling of 68Ga radiopharmaceuticals.


Subject(s)
Antigens, Surface/metabolism , Gallium Radioisotopes/chemistry , Glutamate Carboxypeptidase II/metabolism , Isotope Labeling/methods , Positron-Emission Tomography , Prostatic Neoplasms/diagnostic imaging , Pyridones/chemistry , Temperature , Animals , Biological Transport , Cell Line, Tumor , Cell Transformation, Neoplastic , Drug Stability , Humans , Hydrophobic and Hydrophilic Interactions , Male , Mice , Pyridones/metabolism , Tissue Distribution
2.
J Nucl Med ; 55(4): 686-94, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24604910

ABSTRACT

UNLABELLED: Imaging spontaneous cancer cell metastasis or heterogeneous tumor responses to drug treatment in vivo is difficult to achieve. The goal was to develop a new highly sensitive and reliable preclinical longitudinal in vivo imaging model for this purpose, thereby facilitating discovery and validation of anticancer therapies or molecular imaging agents. METHODS: The strategy is based on breast cancer cells stably expressing the human sodium iodide symporter (NIS) fused to a red fluorescent protein, thereby permitting radionuclide and fluorescence imaging. Using whole-body nano-SPECT/CT with (99m)TcO4(-), we followed primary tumor growth and spontaneous metastasis in the presence or absence of etoposide treatment. NIS imaging was used to classify organs as small as individual lymph nodes (LNs) to be positive or negative for metastasis, and results were confirmed by confocal fluorescence microscopy. Etoposide treatment efficacy was proven by ex vivo anticaspase 3 staining and fluorescence microscopy. RESULTS: In this preclinical model, we found that the NIS imaging strategy outperformed state-of-the-art (18)F-FDG imaging in its ability to detect small tumors (18.5-fold-better tumor-to-blood ratio) and metastases (LN, 3.6-fold) because of improved contrast in organs close to metastatic sites (12- and 8.5-fold-lower standardized uptake value in the heart and kidney, respectively). We applied the model to assess the treatment response to the neoadjuvant etoposide and found a consistent and reliable improvement in spontaneous metastasis detection. Importantly, we also found that tumor cells in different microenvironments responded in a heterogeneous manner to etoposide treatment, which could be determined only by the NIS-based strategy and not by (18)F-FDG imaging. CONCLUSION: We developed a new strategy for preclinical longitudinal in vivo cancer cell tracking with greater sensitivity and reliability than (18)F-FDG PET and applied it to track spontaneous and distant metastasis in the presence or absence of genotoxic stress therapy. Importantly, the model provides sufficient sensitivity and dynamic range to permit the reliable assessment of heterogeneous treatment responses in various microenvironments.


Subject(s)
Neoplasm Metastasis/diagnostic imaging , Neoplasms/diagnostic imaging , Neoplasms/therapy , Whole Body Imaging/methods , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/drug therapy , Antineoplastic Agents, Phytogenic/therapeutic use , Breast Neoplasms/diagnostic imaging , Cell Line, Tumor , DNA Damage , Environment , Etoposide/therapeutic use , Female , Fluorescence , Humans , Lymph Nodes/diagnostic imaging , Microscopy, Confocal , Neoadjuvant Therapy , Positron-Emission Tomography , Radiopharmaceuticals/pharmacokinetics , Reproducibility of Results , Sodium Pertechnetate Tc 99m/pharmacokinetics , Symporters/metabolism , Tissue Distribution , Tomography, Emission-Computed, Single-Photon , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...