Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Mol Pharm ; 21(2): 822-830, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38173242

ABSTRACT

Titanium-45 (45Ti) is a radionuclide with excellent physical characteristics for use in positron emission tomography (PET) imaging, including a moderate half-life (3.08 h), decay by positron emission (85%), and a low mean positron energy of 0.439 MeV. However, challenges associated with titanium chemistry have led to the underdevelopment of this radionuclide for incorporation into radiopharmaceuticals. Expanding on our recent studies, which showed promising results for the complexation of 45Ti with the tris hydroxypyridinone (THPMe) chelator, the current work aimed to optimize the chemistry and imaging attributes of [45Ti]Ti-THP-PSMA as a new PET radiopharmaceutical. Methods. Radiolabeling of THP-PSMA was optimized with [45Ti]Ti-citrate at varying pHs and masses of the precursor. The stability of the radiolabeled complex was assessed in mouse serum for up to 6 h. The affinity of [45Ti]Ti-THP-PSMA for prostate-specific membrane antigen (PSMA) was assessed using LNCaP (PSMA +) and PC3 (PSMA -) cell lines. In vivo imaging and biodistribution analysis were performed in tumor-bearing xenograft mouse models to confirm the specificity of the tumor uptake. Results. > 95% of radiolabeling was achieved with a high specific activity of 5.6 MBq/nmol under mild conditions. In vitro cell binding studies showed significant binding of the radiolabeled complex with the PSMA-expressing LNCaP cell line (11.9 ± 1.5%/mg protein-bound activity) compared to that with the nonexpressing PC3 cells (1.9 ± 0.4%/mg protein-bound activity). In vivo imaging and biodistribution studies confirmed specific uptake in LNCaP tumors (1.6 ± 0.27% ID/g) compared to that in PC3 tumors (0.39 ± 0.2% ID/g). Conclusion. This study showed a simple one-step radiolabeling method for 45Ti with THP-PSMA under mild conditions (pH 8 and 37 °C). In vitro cell studies showed promise, but in vivo tumor xenograft studies indicated low tumor uptake. Overall, this study shows the need for more chelators for 45Ti for the development of a PET radiopharmaceutical for cancer imaging.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Male , Humans , Animals , Mice , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals , Prostatic Neoplasms/metabolism , Radiochemistry , Tissue Distribution , Titanium , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Positron-Emission Tomography , Radioisotopes , Chelating Agents , Cell Line, Tumor
2.
RSC Chem Biol ; 4(1): 65-73, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36685254

ABSTRACT

Cell labelling agents that enable longitudinal in vivo tracking of administered cells will support the clinical development of cell-based therapies. Radionuclide imaging with gamma and positron-emitting radioisotopes can provide quantitative and longitudinal mapping of cells in vivo. To make this widely accessible and adaptable to a range of cell types, new, versatile and simple methods for directly radiolabelling cells are required. We have developed [111In]In-DTPA-CTP, the first example of a radiolabelled peptide that binds to the extracellular membrane of cells, for tracking cell distribution in vivo using Single Photon Emission Computed Tomography (SPECT). [111In]In-DTPA-CTP consists of (i) myristoyl groups for insertion into the phospholipid bilayer, (ii) positively charged lysine residues for electrostatic association with negatively charged phospholipid groups at the cell surface and (iii) a diethylenetriamine pentaacetate derivative that coordinates the γ-emitting radiometal, [111In]In3+. [111In]In-DTPA-CTP binds to 5T33 murine myeloma cells, enabling qualitative SPECT tracking of myeloma cells' accumulation in lungs immediately after intravenous administration. This is the first report of a radiolabelled cell-membrane binding peptide for use in cell tracking.

3.
Nucl Med Biol ; 110-111: 10-17, 2022.
Article in English | MEDLINE | ID: mdl-35468342

ABSTRACT

PURPOSE: The pO2 threshold of an ideal PET hypoxia tracer for radiotherapy planning in cancer would match those observed in clinically and biologically relevant processes such as radioresistance and HIF1α expression. To identify such tracers, we directly compared uptake in vitro of hypoxia PET tracers ([18F]FMISO, [64Cu]CuATSM, and analogues [64Cu]CuATS, [64Cu]CuATSE, [64Cu]CuCTS, [64Cu]CuDTS, [64Cu]CuDTSE, [64Cu]CuDTSM) with levels of radioresistance and HIF1α expression in cultured cancer cells under identical hypoxic conditions ranging from extreme hypoxia to normoxia. Pimonidazole uptake was also compared as a marker of hypoxia. METHODS: A custom-built hypoxia apparatus enabled all experiments to be performed under identical hypoxic conditions with constant measurement of pO2 in media using an OxyLab pO2™ probe. HCT116 human colonic carcinoma and MCF-7 human Caucasian breast adenocarcinoma cells were irradiated using a cobalt teletherapy unit. Clonogenic assays were used to assess survival. HIF1α expression was determined by western blotting, tracer uptake by gamma counting and pimonidazole binding by flow cytometry. RESULTS: Radioresistance, pimonidazole binding and HIF1α expression increased gradually as pO2 decreased between 25 mmHg and 0 mmHg. In contrast, all the PET hypoxia tracers showed a sharp increase in uptake only when pO2 levels fell below 1 mmHg. Above this threshold, tracer uptake was not elevated above that in normoxic cells. CONCLUSION: This study highlights an important mismatch in pO2 thresholds between these PET tracers and other markers of hypoxia: tracer uptake only occurred at oxygen levels that were well below levels that induced radioresistance, pimonidazole uptake and HIF1α expression. Although their pO2 thresholds do not match the threshold for resistance to conventionally fractionated radiotherapy (pO2 2.5-10 mmHg), their specificity for extreme hypoxia (pO2 ≪ 1 mmHg) suggests these PET tracers may be of particular use to predict outcomes in stereotactic radiation therapy where these maximally resistant cells play a key role in determining the biological effect.


Subject(s)
Neoplasms , Radiosurgery , Biomarkers , Cell Hypoxia , Humans , Hypoxia , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Positron-Emission Tomography
4.
Bioconjug Chem ; 32(7): 1242-1254, 2021 07 21.
Article in English | MEDLINE | ID: mdl-33241692

ABSTRACT

Hexahistidine tags (His-tags), incorporated into recombinant proteins to facilitate purification using metal-affinity chromatography, are useful binding sites for radiolabeling with [99mTc(CO)3]+ and [188Re(CO)3]+ for molecular imaging and radionuclide therapy. Labeling efficiencies vary unpredictably, and the method is therefore not universally useful. To overcome this, we have made quantitative comparisons of radiolabeling of a bespoke Celluspots array library of 382 His-tag-containing peptide sequences with [99mTc(CO)3]+ and [188Re(CO)3]+ to identify key features that enhance labeling. A selected sequence with 10-fold enhanced labeling efficiency compared to the most effective literature-reported sequences was incorporated into an exemplar protein and compared biologically with non-optimized analogues, in vitro and in vivo. Optimal labeling with either [99mTc(CO)3]+ or [188Re(CO)3]+ required six consecutive His residues in the protein sequence, surrounded by several positively charged residues (Arg or Lys), and the presence of phosphate in the buffer. Cys or Met residues in the sequence were beneficial, to a lesser extent. Negatively charged residues were deleterious to labeling. His-tags with adjacent positively charged residues could be labeled as much as 40 times more efficiently than those with adjacent negatively charged residues. 31P NMR of [Re(CO)3(H2O)3]+ and electrophoresis of solutions of [99mTc(CO)3(H2O)3]+ suggest that phosphate bridges form between cationic residues and the cationic metal synthon during labeling. The trial optimized protein, a scFv targeted to the PSMA antigen expressed in prostate cancer, was readily labeled in >95% radiochemical yield, without the need for subsequent purification. Labeling occurred more quickly and to higher specific activity than comparable non-optimized proteins, while retaining specific binding to PSMA and prostate cancer in vivo. Thus, optimized His-tags greatly simplify radiolabeling of recombinant proteins making them potentially more widely and economically available for imaging and treating patients.


Subject(s)
Histidine/chemistry , Organotechnetium Compounds/chemistry , Peptides/chemistry , Proteins/chemistry , Radiopharmaceuticals/chemistry , Rhenium/chemistry
5.
EJNMMI Res ; 7(1): 86, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-29067565

ABSTRACT

BACKGROUND: Labelling proteins with gallium-68 using bifunctional chelators is often problematic because of unsuitably harsh labelling conditions such as low pH or high temperature and may entail post-labelling purification. To determine whether tris(hydroxypyridinone) (THP) bifunctional chelators offer a potential solution to this problem, we have evaluated the labelling and biodistribution of a THP conjugate with a new single-chain antibody against the prostate-specific membrane antigen (PSMA), an attractive target for staging prostate cancer (PCa). A single-chain variable fragment (scFv) of J591, a monoclonal antibody that recognises an external epitope of PSMA, was prepared in order to achieve biokinetics matched to the half-life of gallium-68. The scFv, J591c-scFv, was engineered with a C-terminal cysteine. RESULTS: J591c-scFv was produced in HEK293T cells and purified by size-exclusion chromatography. A maleimide THP derivative (THP-mal) was coupled site-specifically to the C-terminal cysteine residue. The THP-mal-J591c-scFv conjugate was labelled with ammonium acetate-buffered gallium-68 from a 68Ge/68Ga generator at room temperature and neutral pH. The labelled conjugate was evaluated in the PCa cell line DU145 and its PSMA-overexpressing variant in vitro and xenografted in SCID mice. J591c-scFv was produced in yields of 4-6 mg/l culture supernatant and efficiently coupled with the THP-mal bifunctional chelator. Labelling yields > 95% were achieved at room temperature following incubation of 5 µg conjugate with gallium-68 for 5 min without post-labelling purification. 68Ga-THP-mal-J591c-scFv was stable in serum and showed selective binding to the DU145-PSMA cell line, allowing an IC50 value of 31.5 nM to be determined for unmodified J591c-scFv. Serial PET/CT imaging showed rapid, specific tumour uptake and clearance via renal elimination. Accumulation in DU145-PSMA xenografts at 90 min post-injection was 5.4 ± 0.5%ID/g compared with 0.5 ± 0.2%ID/g in DU145 tumours (n = 4). CONCLUSIONS: The bifunctional chelator THP-mal enabled simple, rapid, quantitative, one-step room temperature radiolabelling of a protein with gallium-68 at neutral pH without a need for post-labelling purification. The resultant gallium-68 complex shows high affinity for PSMA and favourable in vivo targeting properties in a xenograft model of PCa.

6.
Nucl Med Commun ; 38(8): 666-671, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28598898

ABSTRACT

INTRODUCTION: Prostate-specific membrane antigen (PSMA) is an extensively studied antigen for imaging prostate cancer. We prepared a single-chain variable fragment (scFv) of J591, a monoclonal antibody that recognises an external epitope of PSMA, incorporating a His-tag for labelling with Tc tricarbonyl, and evaluated its binding using human PCa cell lines. METHODS: J591(scFv) was expressed in HEK-293T cells and purified by metal ion affinity chromatography, followed by size exclusion chromatography. Stability and monomer/dimer ratios of purified scFv under different storage conditions were analysed by SDS-PAGE and analytical size exclusion chromatography. J591(scFv) was labelled with (Equation is included in full-text article.)at 37°C for 60 min. The stability of Tc-scFv in human serum was analysed by SDS-PAGE with autoradiography. Cell-binding studies were carried out using PC3LN3 (PSMA negative) and PC3LN3-PSMA (a variant engineered to express PSMA) cell lines. RESULTS: J591(scFv) was most stable to dimerisation on storage at -80°C compared with -20 and 4°C. Radiochemical yields of 85-90% were obtained with the final radiochemical purity of more than 99% after purification by gel filtration. In these small-scale studies, the maximum specific activity achieved was 7 MBq/µg. Liquid chromatography-mass spectrometry showed the formation of Tc-J591(scFv), which was radiochemically stable in serum, with no dissociation of Tc over 24 h. Cell-binding assays showed specific binding to PSMA-positive cells. CONCLUSION: J591(scFv) can be radiolabelled with (Equation is included in full-text article.)conveniently and efficiently. The labelled product was stable in serum. It showed selective binding to PSMA-positive cells compared with PSMA-negative cells. This potential radiotracer warrants evaluation in PCa xenograft models.


Subject(s)
Antigens, Surface/immunology , Glutamate Carboxypeptidase II/immunology , Single-Chain Antibodies/immunology , Technetium/chemistry , Antigens, Surface/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Glutamate Carboxypeptidase II/metabolism , HEK293 Cells , Humans , Isotope Labeling , Male , Prostatic Neoplasms/pathology , Radiochemistry , Single-Chain Antibodies/chemistry
7.
Bioconjug Chem ; 27(2): 319-28, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26172432

ABSTRACT

Multimodal nanoparticulate materials are described, offering magnetic, radionuclide, and fluorescent imaging capabilities to exploit the complementary advantages of magnetic resonance imaging (MRI), positron emission tomography/single-photon emission commuted tomography (PET/SPECT), and optical imaging. They comprise Fe3O4@NaYF4 core/shell nanoparticles (NPs) with different cation dopants in the shell or core, including Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm). These NPs are stabilized by bisphosphonate polyethylene glycol conjugates (BP-PEG), and then show a high transverse relaxivity (r2) up to 326 mM(-1) s(-1) at 3T, a high affinity to [(18)F]-fluoride or radiometal-bisphosphonate conjugates (e.g., (64)Cu and (99m)Tc), and fluorescent emissions from 500 to 800 nm under excitation at 980 nm. The biodistribution of intravenously administered particles determined by PET/MR imaging suggests that negatively charged Co0.16Fe2.84O4@NaYF4(Yb, Er)-BP-PEG (10K) NPs cleared from the blood pool more slowly than positively charged NPs Fe3O4@NaYF4(Yb, Tm)-BP-PEG (2K). Preliminary results in sentinel lymph node imaging in mice indicate the advantages of multimodal imaging.


Subject(s)
Ferrosoferric Oxide/chemistry , Fluorides/chemistry , Magnetic Resonance Imaging/methods , Nanoparticles/chemistry , Optical Imaging/methods , Positron-Emission Tomography/methods , Yttrium/chemistry , Animals , Diphosphonates/chemistry , Diphosphonates/pharmacokinetics , Ferrosoferric Oxide/pharmacokinetics , Fluorides/pharmacokinetics , Male , Mice, Inbred C57BL , Mice, Nude , Multimodal Imaging/methods , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Tomography, Emission-Computed, Single-Photon/methods , Yttrium/pharmacokinetics
8.
Adv Inorg Chem ; 68: 1-41, 2016.
Article in English | MEDLINE | ID: mdl-30381783

ABSTRACT

The development of medical imaging is a highly multidisciplinary endeavor requiring the close cooperation of clinicians, physicists, engineers, biologists and chemists to identify capabilities, conceive challenges and solutions and apply them in the clinic. The chemistry described in this article illustrates how synergistic advances in these areas drive the technology and its applications forward, with each discipline producing innovations that in turn drive innovations in the others. The main thread running through the article is the shift from single photon radionuclide imaging towards PET, and in turn the emerging shift from PET/CT towards PET/MRI and further, combination of these with optical imaging. Chemistry to support these transitions is exemplified by building on a summary of the status quo, and recent developments, in technetium-99m chemistry for SPECT imaging, followed by a report of recent developments to support clinical application of short lived (Ga-68) and long-lived (Zr-89) positron emitting isotopes, copper isotopes for PET imaging, and combined modality imaging agents based on radiolabelled iron oxide based nanoparticles.

9.
EJNMMI Res ; 5(1): 69, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26611870

ABSTRACT

BACKGROUND: Macrophages represent a critical cell type in host defense, development and homeostasis. The ability to image non-invasively pro-inflammatory macrophage infiltrate into a transplanted organ may provide an additional tool for the monitoring of the immune response of the recipient against the donor graft. We therefore decided to image in vivo sialoadhesin (Sn, Siglec 1 or CD169) using anti-Sn mAb (SER-4) directly radiolabelled with (99m)Tc pertechnetate. METHODS: We used a heterotopic heart transplantation model where allogeneic or syngeneic heart grafts were transplanted into the abdomen of recipients. In vivo nanosingle-photon emission computed tomography (SPECT/CT) imaging was performed 7 days post transplantation followed by biodistribution and histology. RESULTS: In wild-type mice, the majority of (99m)Tc-SER-4 monoclonal antibody cleared from the blood with a half-life of 167 min and was located predominantly on Sn(+) tissues in the spleen, liver and bone marrow. The biodistribution in the transplantation experiments confirmed data derived from the non-invasive SPECT/CT images, with significantly higher levels of (99m)Tc-SER-4 observed in allogeneic grafts (9.4 (±2.7) %ID/g) compared to syngeneic grafts (4.3 (±10.3) %ID/g) (p = 0.0022) or in mice which received allogeneic grafts injected with (99m)Tc-IgG isotype control (5.9 (±0.6) %ID/g) (p = 0.0185). The transplanted heart to blood ratio was also significantly higher in recipients with allogeneic grafts receiving (99m)Tc-SER-4 as compared to recipients with syngeneic grafts (p = 0.000004) or recipients with allogeneic grafts receiving (99m)Tc-IgG isotype (p = 0.000002). CONCLUSIONS: Here, we demonstrate that imaging of Sn(+) macrophages in inflammation may provide an important additional and non-invasive tool for the monitoring of the pathophysiology of cellular immunity in a transplant model.

10.
Eur J Nucl Med Mol Imaging ; 42(2): 278-87, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25359636

ABSTRACT

PURPOSE: (111)In (typically as [(111)In]oxinate3) is a gold standard radiolabel for cell tracking in humans by scintigraphy. A long half-life positron-emitting radiolabel to serve the same purpose using positron emission tomography (PET) has long been sought. We aimed to develop an (89)Zr PET tracer for cell labelling and compare it with [(111)In]oxinate3 single photon emission computed tomography (SPECT). METHODS: [(89)Zr]Oxinate4 was synthesised and its uptake and efflux were measured in vitro in three cell lines and in human leukocytes. The in vivo biodistribution of eGFP-5T33 murine myeloma cells labelled using [(89)Zr]oxinate4 or [(111)In]oxinate3 was monitored for up to 14 days. (89)Zr retention by living radiolabelled eGFP-positive cells in vivo was monitored by FACS sorting of liver, spleen and bone marrow cells followed by gamma counting. RESULTS: Zr labelling was effective in all cell types with yields comparable with (111)In labelling. Retention of (89)Zr in cells in vitro after 24 h was significantly better (range 71 to >90%) than (111)In (43-52%). eGFP-5T33 cells in vivo showed the same early biodistribution whether labelled with (111)In or (89)Zr (initial pulmonary accumulation followed by migration to liver, spleen and bone marrow), but later translocation of radioactivity to kidneys was much greater for (111)In. In liver, spleen and bone marrow at least 92% of (89)Zr remained associated with eGFP-positive cells after 7 days in vivo. CONCLUSION: [(89)Zr]Oxinate4 offers a potential solution to the emerging need for a long half-life PET tracer for cell tracking in vivo and deserves further evaluation of its effects on survival and behaviour of different cell types.


Subject(s)
Organometallic Compounds/pharmacokinetics , Oxyquinoline/analogs & derivatives , Radiopharmaceuticals/pharmacokinetics , Tomography, Emission-Computed, Single-Photon , Zirconium/pharmacokinetics , Animals , Cell Line, Tumor , Humans , Mice , Mice, Inbred C57BL , Organometallic Compounds/adverse effects , Oxyquinoline/adverse effects , Oxyquinoline/pharmacokinetics , Radiopharmaceuticals/adverse effects , Tissue Distribution , Zirconium/adverse effects
11.
Dalton Trans ; 43(39): 14851-7, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25164373

ABSTRACT

The increasing availability of the long half-life positron emitter Zr-89 (half life 78.4 h) suggests that it is a strong candidate for cell labelling and hence cell tracking using positron emission tomography. The aim was to produce a range of neutral ZrL4 lipophilic complexes for cell labelling which could be prepared under radiopharmaceutical conditions. This was achieved when the ligand was oxine, tropolone or ethyl maltol. The complexes can be prepared in high yield from zirconium(iv) precursors in hydrochloric or oxalic acid solution. The oxinate and tropolonate complexes were the most amenable to chromatographic characterisation, and HPLC and ITLC protocols have been established to monitor their radiochemical purity. The radiochemical synthesis and quality control of (89)Zr(oxinate)4 is reported as well as preliminary cell labelling data for the oxinate, tropolonate and ethyl maltolate complexes which indicates that (89)Zr(oxinate)4 is the most promising candidate for further evaluation.


Subject(s)
Breast Neoplasms/diagnosis , Cell Tracking/methods , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , Positron-Emission Tomography , Radiopharmaceuticals , Zirconium/chemistry , Cell Line, Tumor , Chromatography, High Pressure Liquid , Coordination Complexes/chemistry , Female , Humans , Radioisotopes
12.
J Allergy Clin Immunol ; 133(1): 233-9.e1, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23953710

ABSTRACT

BACKGROUND: Hitherto, in vivo studies of human granulocyte migration have been based on indiscriminate labeling of total granulocyte populations. We hypothesized that the kinetics of isolated human neutrophil and eosinophil migration through major organs in vivo are fundamentally different, with the corollary that studying unseparated populations distorts measurement of both. METHODS: Blood neutrophils and eosinophils were isolated on 2 separate occasions from human volunteers by using Current Good Manufacturing Practice CD16 CliniMACS isolation, labeled with technetium 99m-hexamethylpropyleneamine oxime, and then reinfused intravenously. The kinetics of cellular efflux were imaged over 4 hours. RESULTS: Neutrophils and eosinophils were isolated to a mean purity of greater than 97% and greater than 95%, respectively. Activation of neutrophils measured as an increase in their CD11b mean fluorescence intensity in whole blood and after isolation and radiolabeling was 25.98 ± 7.59 and 51.82 ± 17.44, respectively, and was not significant (P = .052), but the mean fluorescence intensity of CD69 increased significantly on eosinophils. Analysis of the scintigraphic profile of lung efflux revealed exponential clearance of eosinophils, with a mean half-life of 4.16 ± 0.11 minutes. Neutrophil efflux was at a significantly slower half-life of 13.72 ± 4.14 minutes (P = .009). The migration of neutrophils and eosinophils was significantly different in the spleen at all time points (P = .014), in the liver at 15 minutes (P = .001), and in the bone marrow at 4 hours (P = .003). CONCLUSIONS: The kinetics of migration of neutrophils and eosinophils through the lung, spleen, and bone marrow of human volunteers are significantly different. Study of mixed populations might be misleading.


Subject(s)
Bone Marrow/immunology , Eosinophils/immunology , Liver/immunology , Neutrophils/immunology , Spleen/immunology , Adult , Cell Movement , Cell Tracking/methods , Female , Humans , Immunomagnetic Separation , Male , Oximes , Receptors, IgG/metabolism , Technetium
13.
EBioMedicine ; 1(2-3): 173-80, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26137523

ABSTRACT

BACKGROUND: It is important to study differential inflammatory cellular migration, particularly of eosinophils and neutrophils, in asthma and how this is influenced by environmental stimuli such as allergen exposure and the effects of anti asthma therapy. METHODS: We isolated blood neutrophils and eosinophils from 12 atopic asthmatic human volunteers (Group 1 - four Early Allergic Responders unchallenged (EAR); Group 2 - four Early and Late Allergic Responders (LAR) challenged; Group 3 - four EAR and LAR challenged and treated with systemic corticosteroids) using cGMP CD16 CliniMACS. Cells were isolated prior to allergen challenge where applicable, labelled with (99m)Tc-HMPAO and then re-infused intravenously. The kinetics of cellular influx/efflux into the lungs and other organs were imaged via scintigraphy over 4 h, starting at 5 to 6 h following allergen challenge where applicable. RESULTS: Neutrophils and eosinophils were isolated to a mean (SD) purity of 98.36% (1.09) and 96.31% (3.0), respectively. Asthmatic neutrophils were activated at baseline, mean (SD) CD11b(High) cells 46 (10.50) %. Isolation and radiolabelling significantly increased their activation to > 98%. Eosinophils were not activated at baseline, CD69(+) cells 1.9 (0.6) %, increasing to 38 (3.46) % following isolation and labelling. Analysis of the kinetics of net eosinophil and neutrophil lung influx/efflux conformed to a net exponential clearance with respective mean half times of clearance 6.98 (2.18) and 14.01 (2.63) minutes for Group 1, 6.03 (0.72) and 16.04 (2.0) minutes for Group 2 and 5.63 (1.20) and 14.56 (3.36) minutes for Group 3. These did not significantly differ between the three asthma groups (p > 0.05). CONCLUSIONS: Isolation and radiolabelling significantly increased activation of eosinophils (CD69) and completely activated neutrophils (CD11b(High)) in all asthma groups. Net lung neutrophil efflux was significantly slower than that of eosinophils in all asthma study groups. There was a trend for pre-treatment with systemic corticosteroids to reduce lung retention of eosinophils following allergen challenge.

14.
Immunology ; 138(3): 198-207, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23181380

ABSTRACT

Sialoadhesin (Sn, also known as Siglec-1 and CD169) is a macrophage-restricted cell surface receptor that is conserved across mammals. Sn is a member of the sialic acid-binding IgG-like lectin (Siglec) family of proteins characterized by affinity to specifically sialylated ligands, and under normal conditions is expressed on subsets of macrophages in secondary lymphoid tissues, such as lymph node and spleen. However, Sn-positive macrophages can also be found in a variety of pathological conditions, including (autoimmune) inflammatory infiltrates and tumours. Sn has been shown to contribute to sialylated pathogen uptake, antigen presentation and lymphocyte proliferation, and to influence both immunity and tolerance. This review presents Sn as a macrophage-specific marker of inflammation and immunoregulation with the potential to becoming an important biomarker for immunologically active macrophages and a target for therapy.


Subject(s)
Inflammation/immunology , Inflammation/metabolism , Macrophages/immunology , Macrophages/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Biomarkers/metabolism , Gene Expression Regulation , Humans , Inflammation/genetics , N-Acetylneuraminic Acid/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Sialic Acid Binding Ig-like Lectin 1/genetics
15.
PLoS One ; 7(6): e36996, 2012.
Article in English | MEDLINE | ID: mdl-22675476

ABSTRACT

Self-associated protein aggregates or cross-linked protein conjugates are, in general, more immunogenic than oligomeric or monomeric forms. In particular, the immunogenicity in mice of a recombinant malaria transmission blocking vaccine candidate, the ookinete specific Plasmodium falciparum 25 kDa protein (Pfs25), was increased more than 1000-fold when evaluated as a chemical cross-linked protein-protein conjugate as compared to a formulated monomer. Whether alternative approaches using protein complexes improve the immunogenicity of other recombinant malaria vaccine candidates is worth assessing. In this work, the immunogenicity of the recombinant 42 kDa processed form of the P. falciparum merozoite surface protein 1 (MSP1(42)) was evaluated as a self-associated, non-covalent aggregate and as a chemical cross-linked protein-protein conjugate to ExoProtein A, which is a recombinant detoxified form of Pseudomonas aeruginosa exotoxin A. MSP1(42) conjugates were prepared and characterized biochemically and biophysically to determine their molar mass in solution and stoichiometry, when relevant. The immunogenicity of the MSP1(42) self-associated aggregates, cross-linked chemical conjugates and monomers were compared in BALB/c mice after adsorption to aluminum hydroxide adjuvant, and in one instance in association with the TLR9 agonist CPG7909 with an aluminum hydroxide formulation. Antibody titers were assessed by ELISA. Unlike observations made for Pfs25, no significant enhancement in MSP1(42) specific antibody titers was observed for any conjugate as compared to the formulated monomer or dimer, except for the addition of the TLR9 agonist CPG7909. Clearly, enhancing the immunogenicity of a recombinant protein vaccine candidate by the formation of protein complexes must be established on an empirical basis.


Subject(s)
Cross-Linking Reagents/metabolism , Merozoite Surface Protein 1/chemistry , Merozoite Surface Protein 1/immunology , Plasmodium falciparum/immunology , Animals , Antibodies, Protozoan/immunology , Bacterial Proteins/immunology , Chromatography, Gel , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , Immunoglobulin G/immunology , Light , Mice , Mice, Inbred BALB C , Molecular Weight , Protein Isoforms/chemistry , Protein Isoforms/immunology , Protein Multimerization , Protein Structure, Quaternary , Recombinant Proteins , Scattering, Radiation , Titrimetry
16.
J Inorg Biochem ; 114: 24-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22687562

ABSTRACT

We recently described a novel amino acid sequence, KCKLAAALEHHHHHH, for site-specific radiolabelling of proteins with [(99m)Tc(CO)(3)(OH(2))(3)](+) or [Re(CO)(3)(OH(2))(3)](+) with improved efficiency compared to conventional hexahistidine tags (His-tag). C2AH, a modification of the protein C2A (the phosphatidylserine (PS)-binding domain of rat synaptotagmin I) engineered to contain this novel C-terminal tag, was produced. Rhenium tricarbonyl conjugates of C2AH were analysed post tryptic digest by liquid chromatography-electrospray mass spectrometry (LC-MS), giving rise to a peak with the molecular weight corresponding to M(+)=[Re(CO)(3)+CK+LAAALEHHHHHH](+). This species arises as a result of trypsin cleavage on the C-terminus of both the lysine (Lys) residues on either side of the Cys while both fragments still remain bound to the rhenium. This confirmed that cysteine (Cys) was directly involved in the coordination of the rhenium tricarbonyl. To demonstrate the superiority of the cysteine containing His-tag sequences for binding [Re(CO)(3)](+), two peptides CKLAAALEHHHHHH and LAAALEHHHHHH were synthesised. In a competition experiment the mixed peptides were incubated with one molar equivalent of [Re(CO)(3)(H(2)O)(3)](+), and LC-ESMS demonstrated that 92% and 9% of CKLAAALEHHHHHH and LAAALEHHHHHH respectively were co-ordinated by one [Re(CO)(3)](+).


Subject(s)
Cysteine/chemistry , Histidine/chemistry , Indicators and Reagents/chemistry , Isotope Labeling/methods , Oligopeptides/chemistry , Organometallic Compounds/chemistry , Technetium Compounds/chemistry , Amino Acid Sequence , Animals , Chromatography, Liquid , Molecular Sequence Data , Phosphatidylserines/chemistry , Protein Structure, Tertiary , Proteolysis , Rats , Spectrometry, Mass, Electrospray Ionization , Synaptotagmin I/chemistry , Trypsin
17.
Vaccine ; 30(2): 189-94, 2012 Jan 05.
Article in English | MEDLINE | ID: mdl-22107848

ABSTRACT

Efficient antigen extraction from vaccines formulated on aluminum hydroxide gels is a critical step for the evaluation of the quality of vaccines following formulation. It has been shown in our laboratory that the efficiency of antigen extraction from vaccines formulated on Alhydrogel decreased significantly with increased storage time. To increase antigen extraction efficiency, the present study determined the effect of surfactants on antigen recovery from vaccine formulations. The Plasmodium falciparum apical membrane antigen 1 (AMA1) formulated on Alhydrogel and stored at 2-8°C for 3 years was used as a model in this study. The AMA1 on Alhydrogel was extracted in the presence or absence of 30 mM sodium dodecyl sulfate (SDS) or 20mM cetylpyridinium chloride in the extraction buffer (0.60 M citrate, 0.55 M phosphate, pH 8.5) using our standard antigen extraction protocols. Extracted AMA1 antigen was analyzed by 4-20% Tris-glycine SDS-PAGE followed by silver staining or western blotting. The results showed that inclusion of SDS or cetylpyridinium chloride in extraction buffer increased the antigen recovery dramatically and can be used for efficient characterization of Alhydrogel vaccines.


Subject(s)
Adjuvants, Immunologic/chemistry , Aluminum Hydroxide/chemistry , Antigens, Protozoan/analysis , Antigens, Protozoan/isolation & purification , Malaria Vaccines/chemistry , Membrane Proteins/analysis , Membrane Proteins/isolation & purification , Protozoan Proteins/analysis , Protozoan Proteins/isolation & purification , Surface-Active Agents/chemistry , Technology, Pharmaceutical/standards , Animals , Buffers , Drug Storage/methods , Humans , Malaria Vaccines/immunology , Malaria Vaccines/standards , Quality Control
18.
PLoS One ; 6(5): e19662, 2011.
Article in English | MEDLINE | ID: mdl-21637760

ABSTRACT

Dendritic cells (DCs) generated in vitro to present tumour antigens have been injected in cancer patients to boost in vivo anti-tumour immune responses. This approach to cancer immunotherapy has had limited success. For anti-tumour therapy, delivery and subsequent migration of DCs to lymph nodes leading to effective stimulation of effector T cells is thought to be essential. The ability to non-invasively monitor the fate of adoptively transferred DCs in vivo using magnetic resonance imaging (MRI) is an important clinical tool to correlate their in vivo behavior with response to treatment. Previous reports of superparamagnetic iron oxides (SPIOs) labelling of different cell types, including DCs, have indicated varying detrimental effects on cell viability, migration, differentiation and immune function. Here we describe an optimised labelling procedure using a short incubation time and low concentration of clinically used SPIO Endorem to successfully track murine DC migration in vivo using MRI in a mouse tumour model. First, intracellular labelling of bone marrow derived DCs was monitored in vitro using electron microscopy and MRI relaxometry. Second, the in vitro characterisation of SPIO labelled DCs demonstrated that viability, phenotype and functions were comparable to unlabelled DCs. Third, ex vivo SPIO labelled DCs, when injected subcutaneously, allowed for the longitudinal monitoring by MR imaging of their migration in vivo. Fourth, the SPIO DCs induced the proliferation of adoptively transferred CD4(+) T cells but, most importantly, they primed cytotoxic CD8(+) T cell responses to protect against a B16-Ova tumour challenge. Finally, using anatomical information from the MR images, the immigration of DCs was confirmed by the increase in lymph node size post-DC injection. These results demonstrate that the SPIO labelling protocol developed in this study is not detrimental for DC function in vitro and in vivo has potential clinical application in monitoring therapeutic DCs in patients with cancer.


Subject(s)
Cancer Vaccines/immunology , Dendritic Cells/immunology , Dextrans/metabolism , Melanoma, Experimental/immunology , Staining and Labeling , Vaccination , Animals , Biological Assay , Bone Marrow Cells/cytology , Cell Movement , Cell Proliferation , Cell Survival , Contrast Media/metabolism , Dendritic Cells/cytology , Dendritic Cells/ultrastructure , Lymph Nodes/metabolism , Magnetic Resonance Imaging , Magnetite Nanoparticles , Mice , Mice, Inbred C57BL , Phenotype , T-Lymphocytes/cytology
19.
Chem Commun (Camb) ; 47(25): 7068-70, 2011 Jul 07.
Article in English | MEDLINE | ID: mdl-21623436

ABSTRACT

A new tripodal tris(hydroxypyridinone) bifunctional chelator for gallium allows easy production of (68)Ga-labelled proteins rapidly under mild conditions in high yields at exceptionally high specific activity and low concentration.


Subject(s)
Chelating Agents/chemistry , Cross-Linking Reagents/chemistry , Positron-Emission Tomography/methods , Pyridones/chemistry , Animals , Gallium Radioisotopes , Humans , Ligands , Mice , Synaptotagmin I/chemistry
20.
PLoS One ; 6(4): e18275, 2011 Apr 06.
Article in English | MEDLINE | ID: mdl-21494666

ABSTRACT

We describe the design and synthesis of a new Tc-99m labeled bioconjugate for imaging activated complement, based on Short Consensus Repeats 1 and 2 of Complement Receptor 2 (CR2), the binding domain for C3d. To avoid non specific modification of CR2 and the potential for modifying lysine residues critical to the CR2/C3d contact surface, we engineered a new protein, recombinant CR2 (rCR2), to include the C-terminal sequence VFPLECHHHHHH, a hexahistidine tag (for site-specific radiolabeling with [(99m)Tc(CO)(3)(OH(2))(3)](+)). The protein was characterized by N-terminal sequencing, SDS-PAGE and size exclusion chromatography. To test the function of the recombinant CR2, binding to C3d was confirmed by enzyme-linked immunosorbent assay (ELISA). The function was further confirmed by binding of rCR2 to C3d(+) red blood cells (RBC) which were generated by deposition of human or rat C3d and analyzed by fluorescence microscopy and flow cytometry. The affinity of rCR2 for C3d(+), in presence of 150 mM NaCl, was measured using surface plasma resonance giving rise to a K(D)≈500 nM. Radiolabeling of rCR2 or an inactive mutant of rCR2 (K41E CR2) or an unrelated protein of a similar size (C2A) with [(99m)Tc(CO)(3)(OH(2))(3)](+) at gave radiochemical yields >95%. Site-specifically radiolabeled rCR2 bound to C3d to C3d(+) RBC. Binding of radiolabeled rCR2 to C3d was inhibited by anti-C3d and the radiolabeled inactive mutant K41E CR2 and C2A did not bind to C3d(+) RBCs. We conclude that rCR2-Tc(99m) has excellent radiolabeling, stability and C3d binding characteristics and warrants in vivo evaluation as an activated complement imaging agent.


Subject(s)
Complement Activation/immunology , Isotope Labeling/methods , Radionuclide Imaging/methods , Radiopharmaceuticals , Receptors, Complement 3d/immunology , Recombinant Proteins/immunology , Technetium Compounds , Technetium , Animals , Chromatography, Gel , Cloning, Molecular , Complement C3d/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Erythrocytes/cytology , Erythrocytes/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Humans , Immobilized Proteins , Mutation/genetics , Protein Binding , Protein Stability , Rats , Sheep , Spectrometry, Mass, Electrospray Ionization , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...