Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 158(20)2023 May 28.
Article in English | MEDLINE | ID: mdl-37253102

ABSTRACT

A photovoltaic device fabricated with conventional zincblende materials can use the Type-II quantum well structure, which spatially separates electrons and holes, to reduce their recombination rate. In order to obtain higher power conversion efficiency, it is desirable to preserve more energetic carriers by engineering a phonon "bottleneck," a mismatch between the gaps in the well and barrier phonon structure. Such a mismatch leads to poor phonon transport and therefore prevents energy from leaving the system in the form of heat. In this paper, we perform a superlattice phonon calculation to verify the "bottleneck" effect and build on this a model to predict the steady state of the hot electrons under photoexcitation. We describe the electrons and phonons with a coupled Boltzmann equation system and numerically integrate it to get the steady state. We find that inhibited phonon relaxation does lead to a more out-of-equilibrium electron distribution and discuss how this might be enhanced. We examine the different behaviors obtained for various combinations of recombination and relaxation rates and their experimental signatures.

2.
Nanotechnology ; 19(6): 065702, 2008 Feb 13.
Article in English | MEDLINE | ID: mdl-21730709

ABSTRACT

A computational model was developed to study the thermal conductivity of single-walled carbon nanotube (SWNT)-polymer composites. A random walk simulation was used to model the effect of interfacial resistance on the heat flow in different orientations of SWNTs dispersed in the polymers. The simulation is a modification of a previous model taking into account the numerically determined thermal equilibrium factor between the SWNTs and the composite matrix material. The simulation results agreed well with reported experimental data for epoxy and polymethyl methacrylate (PMMA) composites. The effects of the SWNT orientation, weight fraction and thermal boundary resistance on the effective conductivity of composites were quantified. The present model is a useful tool for the prediction of the thermal conductivity within a wide range of volume fractions of the SWNTs, so long as the SWNTs are not in contact with each other. The developed model can be applied to other polymers and solid materials, possibly even metals.

SELECTION OF CITATIONS
SEARCH DETAIL
...