Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Child Dev ; 92(1): 21-34, 2021 01.
Article in English | MEDLINE | ID: mdl-32920852

ABSTRACT

Two experiments examined perceptual colocation of visual and tactile stimuli in young infants. Experiment 1 compared 4- (n = 15) and 6-month-old (n = 12) infants' visual preferences for visual-tactile stimulus pairs presented across the same or different feet. The 4- and 6-month-olds showed, respectively, preferences for colocated and noncolocated conditions, demonstrating sensitivity to visual-tactile colocation on their feet. This extends previous findings of visual-tactile perceptual colocation on the hands in older infants. Control conditions excluded the possibility that both 6- (Experiment 1), and 4-month-olds (Experiment 2, n = 12) perceived colocation on the basis of an undifferentiated supramodal coding of spatial distance between stimuli. Bimodal perception of visual-tactile colocation is available by 4 months of age, that is, prior to the development of skilled reaching.


Subject(s)
Child Development/physiology , Psychomotor Performance/physiology , Touch Perception/physiology , Visual Perception/physiology , Humans , Infant , Male , Photic Stimulation/methods , Touch
2.
Rev. colomb. psiquiatr ; 46(3): 187-192, July-Sept. 2017.
Article in English | LILACS, COLNAL | ID: biblio-960135

ABSTRACT

Abstract When considering the importance of the human cognitive function of creativity, we often overlook the fact that it is due to human creativity and to the constant search for new sensory stimuli that our world has, throughout the years, been one of innovation in every aspect of our existence -in the sciences, the humanities, and the arts. Almost everything that surrounds us is the result of human creativity, therefore it is not difficult to understand that although neuroscientific research has led to valuable perceptions into the probable underpinnings of this multifaceted ability, the precise neurological substrates that underlie creativity are yet to be determined. Despite the establishment of a strong link between creativity and divergent thinking, other brain networks have been implicated in this mental process. The following review underlines recent studies on the neural foundations of creativity. A comprehensive analysis of the upmost important facts will be presented, with emphasis on concepts, tests, and methods that have been used to study creativity, and how they have outlined a pathway to the key understanding of this unique human ability.


Resumen Al considerar la importancia de la creatividad en la función cognitiva humana, sucede con frecuencia y pasamos por alto el hecho de que es precisamente debido a la creatividad humana que a través de los arios nuestro mundo ha estado en constante innovación en cada aspecto de nuestra existencia: en la ciencia, las humanidades y las artes. Casi todo lo que nos rodea se debe a la creatividad humana; por lo tanto, no es difícil entender que, aunque la investigación neurocientífica ha conducido a percepciones valiosas sobre los fundamentos probables de esta capacidad multifacética, estos estudios no han permitido conclusiones claras y tienen todavía mucho por determinar para comprenderla mejor. A pesar de que se ha establecido un fuerte vínculo entre la creatividad y el pensamiento divergente, científicos han identificado otras redes cerebrales implicadas en este proceso mental. La presente revisión subraya los estudios recientes sobre los fundamentos neuronales de la creatividad. Se presenta un análisis comprensivo con énfasis en los conceptos, las pruebas y los métodos que se han utilizado para estudiar la creatividad y la forma en que han proyectado una vía para la comprensión fundamental de esta capacidad humana única.


Subject(s)
Humans , Creativity , Cognitive Neuroscience , Perception , Neurosciences , Cognition
3.
Rev Colomb Psiquiatr ; 46(3): 187-192, 2017.
Article in English | MEDLINE | ID: mdl-28728803

ABSTRACT

When considering the importance of the human cognitive function of creativity, we often overlook the fact that it is due to human creativity and to the constant search for new sensory stimuli that our world has, throughout the years, been one of innovation in every aspect of our existence -in the sciences, the humanities, and the arts. Almost everything that surrounds us is the result of human creativity, therefore it is not difficult to understand that although neuroscientific research has led to valuable perceptions into the probable underpinnings of this multifaceted ability, the precise neurological substrates that underlie creativity are yet to be determined. Despite the establishment of a strong link between creativity and divergent thinking, other brain networks have been implicated in this mental process. The following review underlines recent studies on the neural foundations of creativity. A comprehensive analysis of the upmost important facts will be presented, with emphasis on concepts, tests, and methods that have been used to study creativity, and how they have outlined a pathway to the key understanding of this unique human ability.


Subject(s)
Cognition/physiology , Creativity , Neural Pathways/physiology , Brain/physiology , Humans , Thinking/physiology
5.
PLoS Genet ; 9(1): e1003094, 2013.
Article in English | MEDLINE | ID: mdl-23382688

ABSTRACT

The ribosome is an evolutionarily conserved organelle essential for cellular function. Ribosome construction requires assembly of approximately 80 different ribosomal proteins (RPs) and four different species of rRNA. As RPs co-assemble into one multi-subunit complex, mutation of the genes that encode RPs might be expected to give rise to phenocopies, in which the same phenotype is associated with loss-of-function of each individual gene. However, a more complex picture is emerging in which, in addition to a group of shared phenotypes, diverse RP gene-specific phenotypes are observed. Here we report the first two mouse mutations (Rps7(Mtu) and Rps7(Zma)) of ribosomal protein S7 (Rps7), a gene that has been implicated in Diamond-Blackfan anemia. Rps7 disruption results in decreased body size, abnormal skeletal morphology, mid-ventral white spotting, and eye malformations. These phenotypes are reported in other murine RP mutants and, as demonstrated for some other RP mutations, are ameliorated by Trp53 deficiency. Interestingly, Rps7 mutants have additional overt malformations of the developing central nervous system and deficits in working memory, phenotypes that are not reported in murine or human RP gene mutants. Conversely, Rps7 mouse mutants show no anemia or hyperpigmentation, phenotypes associated with mutation of human RPS7 and other murine RPs, respectively. We provide two novel RP mouse models and expand the repertoire of potential phenotypes that should be examined in RP mutants to further explore the concept of RP gene-specific phenotypes.


Subject(s)
Anemia, Diamond-Blackfan , Central Nervous System , Morphogenesis/genetics , Ribosomal Proteins/genetics , Anemia, Diamond-Blackfan/genetics , Anemia, Diamond-Blackfan/pathology , Animals , Body Size/genetics , Central Nervous System/growth & development , Central Nervous System/pathology , Disease Models, Animal , Humans , Memory, Short-Term/physiology , Mice , Mutation , Phenotype , Ribosomal Proteins/physiology , Ribosomes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...