Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Front Neuroergon ; 5: 1355534, 2024.
Article in English | MEDLINE | ID: mdl-38529269

ABSTRACT

Introduction: Functional near-infrared spectroscopy (fNIRS) aims to infer cognitive states such as the type of movement imagined by a study participant in a given trial using an optical method that can differentiate between oxygenation states of blood in the brain and thereby indirectly between neuronal activity levels. We present findings from an fNIRS study that aimed to test the applicability of a high-density (>3000 channels) NIRS device for use in short-duration (2 s) left/right hand motor imagery decoding in a diverse, but not explicitly balanced, subject population. A side aim was to assess relationships between data quality, self-reported demographic characteristics, and brain-computer interface (BCI) performance, with no subjects rejected from recruitment or analysis. Methods: BCI performance was quantified using several published methods, including subject-specific and subject-independent approaches, along with a high-density fNIRS decoder previously validated in a separate study. Results: We found that decoding of motor imagery on this population proved extremely challenging across all tested methods. Overall accuracy of the best-performing method (the high-density decoder) was 59.1 +/- 6.7% after excluding subjects where almost no optode-scalp contact was made over motor cortex and 54.7 +/- 7.6% when all recorded sessions were included. Deeper investigation revealed that signal quality, hemodynamic responses, and BCI performance were all strongly impacted by the hair phenotypical and demographic factors under investigation, with over half of variance in signal quality explained by demographic factors alone. Discussion: Our results contribute to the literature reporting on challenges in using current-generation NIRS devices on subjects with long, dense, dark, and less pliable hair types along with the resulting potential for bias. Our findings confirm the need for increased focus on these populations, accurate reporting of data rejection choices across subject intake, curation, and final analysis in general, and signal a need for NIRS optode designs better optimized for the general population to facilitate more robust and inclusive research outcomes.

2.
bioRxiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38405712

ABSTRACT

Accurately recording the interactions of humans or other organisms with their environment or other agents requires synchronized data access via multiple instruments, often running independently using different clocks. Active, hardware-mediated solutions are often infeasible or prohibitively costly to build and run across arbitrary collections of input systems. The Lab Streaming Layer (LSL) offers a software-based approach to synchronizing data streams based on per-sample time stamps and time synchronization across a common LAN. Built from the ground up for neurophysiological applications and designed for reliability, LSL offers zero-configuration functionality and accounts for network delays and jitters, making connection recovery, offset correction, and jitter compensation possible. These features ensure precise, continuous data recording, even in the face of interruptions. The LSL ecosystem has grown to support over 150 data acquisition device classes as of Feb 2024, and establishes interoperability with and among client software written in several programming languages, including C/C++, Python, MATLAB, Java, C#, JavaScript, Rust, and Julia. The resilience and versatility of LSL have made it a major data synchronization platform for multimodal human neurobehavioral recording and it is now supported by a wide range of software packages, including major stimulus presentation tools, real-time analysis packages, and brain-computer interfaces. Outside of basic science, research, and development, LSL has been used as a resilient and transparent backend in scenarios ranging from art installations to stage performances, interactive experiences, and commercial deployments. In neurobehavioral studies and other neuroscience applications, LSL facilitates the complex task of capturing organismal dynamics and environmental changes using multiple data streams at a common timebase while capturing time details for every data frame.

3.
Front Neurorobot ; 16: 850489, 2022.
Article in English | MEDLINE | ID: mdl-35574227

ABSTRACT

Resonance, a powerful and pervasive phenomenon, appears to play a major role in human interactions. This article investigates the relationship between the physical mechanism of resonance and the human experience of resonance, and considers possibilities for enhancing the experience of resonance within human-robot interactions. We first introduce resonance as a widespread cultural and scientific metaphor. Then, we review the nature of "sympathetic resonance" as a physical mechanism. Following this introduction, the remainder of the article is organized in two parts. In part one, we review the role of resonance (including synchronization and rhythmic entrainment) in human cognition and social interactions. Then, in part two, we review resonance-related phenomena in robotics and artificial intelligence (AI). These two reviews serve as ground for the introduction of a design strategy and combinatorial design space for shaping resonant interactions with robots and AI. We conclude by posing hypotheses and research questions for future empirical studies and discuss a range of ethical and aesthetic issues associated with resonance in human-robot interactions.

4.
Front Neurosci ; 15: 599549, 2021.
Article in English | MEDLINE | ID: mdl-33867912

ABSTRACT

With the emergence of numerous brain computer interfaces (BCI), their form factors, and clinical applications the terminology to describe their clinical deployment and the associated risk has been vague. The terms "minimally invasive" or "non-invasive" have been commonly used, but the risk can vary widely based on the form factor and anatomic location. Thus, taken together, there needs to be a terminology that best accommodates the surgical footprint of a BCI and their attendant risks. This work presents a semantic framework that describes the BCI from a procedural standpoint and its attendant clinical risk profile. We propose extending the common invasive/non-invasive distinction for BCI systems to accommodate three categories in which the BCI anatomically interfaces with the patient and whether or not a surgical procedure is required for deployment: (1) Non-invasive-BCI components do not penetrate the body, (2) Embedded-components are penetrative, but not deeper than the inner table of the skull, and (3) Intracranial -components are located within the inner table of the skull and possibly within the brain volume. Each class has a separate risk profile that should be considered when being applied to a given clinical population. Optimally, balancing this risk profile with clinical need provides the most ethical deployment of these emerging classes of devices. As BCIs gain larger adoption, and terminology becomes standardized, having an improved, more precise language will better serve clinicians, patients, and consumers in discussing these technologies, particularly within the context of surgical procedures.

5.
IEEE Trans Neural Syst Rehabil Eng ; 28(5): 1081-1090, 2020 05.
Article in English | MEDLINE | ID: mdl-32217478

ABSTRACT

Although several guidelines for best practices in EEG preprocessing have been released, even studies that strictly adhere to those guidelines contain considerable variation in the ways that the recommended methods are applied. An open question for researchers is how sensitive the results of EEG analyses are to variations in preprocessing methods and parameters. To address this issue, we analyze the effect of preprocessing methods on downstream EEG analysis using several simple signal and event-related measures. Signal measures include recording-level channel amplitudes, study-level channel amplitude dispersion, and recording spectral characteristics. Event-related methods include ERPs and ERSPs and their correlations across methods for a diverse set of stimulus events. Our analysis also assesses differences in residual signals both in the time and spectral domains after blink artifacts have been removed. Using fully automated pipelines, we evaluate these measures across 17 EEG studies for two ICA-based preprocessing approaches (LARG, MARA) plus two variations of Artifact Subspace Reconstruction (ASR). Although the general structure of the results is similar across these preprocessing methods, there are significant differences, particularly in the low-frequency spectral features and in the residuals left by blinks. These results argue for detailed reporting of processing details as suggested by most guidelines, but also for using a federation of automated processing pipelines and comparison tools to quantify effects of processing choices as part of the research reporting.


Subject(s)
Benchmarking , Electroencephalography , Signal Processing, Computer-Assisted , Artifacts , Blinking , Brain , Humans
6.
Neuroimage ; 207: 116054, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31491523

ABSTRACT

We present the results of a large-scale analysis of event-related responses based on raw EEG data from 17 studies performed at six experimental sites associated with four different institutions. The analysis corpus represents 1,155 recordings containing approximately 7.8 million event instances acquired under several different experimental paradigms. Such large-scale analysis is predicated on consistent data organization and event annotation as well as an effective automated preprocessing pipeline to transform raw EEG into a form suitable for comparative analysis. A key component of this analysis is the annotation of study-specific event codes using a common vocabulary to describe relevant event features. We demonstrate that Hierarchical Event Descriptors (HED tags) capture statistically significant cognitive aspects of EEG events common across multiple recordings, subjects, studies, paradigms, headset configurations, and experimental sites. We use representational similarity analysis (RSA) to show that EEG responses annotated with the same cognitive aspect are significantly more similar than those that do not share that cognitive aspect. These RSA similarity results are supported by visualizations that exploit the non-linear similarities of these associations. We apply temporal overlap regression, reducing confounds caused by adjacent event instances, to extract time and time-frequency EEG features (regressed ERPs and ERSPs) that are comparable across studies and replicate findings from prior, individual studies. Likewise, we use second-level linear regression to separate effects of different cognitive aspects on these features across all studies. This work demonstrates that EEG mega-analysis (pooling of raw data across studies) can enable investigations of brain dynamics in a more generalized fashion than single studies afford. A companion paper complements this event-based analysis by addressing commonality of the time and frequency statistical properties of EEG across studies at the channel and dipole level.


Subject(s)
Brain Mapping , Brain/physiology , Cognition/physiology , Evoked Potentials/physiology , Adult , Brain Mapping/methods , Electroencephalography/methods , Female , Humans , Male , Young Adult
7.
Neuroimage ; 207: 116361, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31770636

ABSTRACT

Significant achievements have been made in the fMRI field by pooling statistical results from multiple studies (meta-analysis). More recently, fMRI standardization efforts have focused on enabling the joint analysis of raw fMRI data across studies (mega-analysis), with the hope of achieving more detailed insights. However, it has not been clear if such analyses in the EEG field are possible or equally fruitful. Here we present the results of a large-scale EEG mega-analysis using 18 studies from six sites representing several different experimental paradigms. We demonstrate that when meta-data are consistent across studies, both channel-level and source-level EEG mega-analysis are possible and can provide insights unavailable in single studies. The analysis uses a fully-automated processing pipeline to reduce line noise, interpolate noisy channels, perform robust referencing, remove eye-activity, and further identify outlier signals. We define several robust measures based on channel amplitude and dispersion to assess the comparability of data across studies and observe the effect of various processing steps on these measures. Using ICA-based dipolar sources, we also observe consistent differences in overall frequency baseline amplitudes across brain areas. For example, we observe higher alpha in posterior vs anterior regions and higher beta in temporal regions. We also detect consistent differences in the slope of the aperiodic portion of the EEG spectrum across brain areas. In a companion paper, we apply mega-analysis to assess commonalities in event-related EEG features across studies. The continuous raw and preprocessed data used in this analysis are available through the DataCatalog at https://cancta.net.


Subject(s)
Brain Mapping , Brain/diagnostic imaging , Electroencephalography , Magnetic Resonance Imaging , Adult , Brain Mapping/methods , Electroencephalography/methods , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Principal Component Analysis/methods
8.
Neuroimage ; 174: 449-462, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29596978

ABSTRACT

We propose a new Sparse Bayesian Learning (SBL) algorithm that can deliver fast, block-sparse, and robust solutions to the EEG source imaging (ESI) problem in the presence of noisy measurements. Current implementations of the SBL framework are computationally expensive and typically handle fluctuations in the measurement noise using different heuristics that are unsuitable for real-time imaging applications. We address these shortcomings by decoupling the estimation of the sensor noise covariance and the sparsity profile of the sources, thereby yielding an efficient two-stage algorithm. In the first stage, we optimize a simplified non-sparse generative model to get an estimate of the sensor noise covariance and a good initialization of the group-sparsity profile of the sources. Sources obtained at this stage are equivalent to those estimated with the popular inverse method LORETA. In the second stage, we apply a fast SBL algorithm with the noise covariance fixed to the value obtained in the first stage to efficiently shrink to zero groups of sources that are irrelevant for explaining the EEG measurements. In addition, we derive an initialization to the first stage of the algorithm that is optimal in the least squares sense, which prevents delays due to suboptimal initial conditions. We validate our method on both simulated and real EEG data. Simulations show that the method is robust to measurement noise and performs well in real-time, with faster performance than two state of the art SBL solvers. On real error-related negativity EEG data, we obtain source images in agreement with the experimental literature. The method shows promise for real-time neuroimaging and brain-machine interface applications.


Subject(s)
Brain/physiology , Electroencephalography/methods , Image Processing, Computer-Assisted/methods , Algorithms , Artifacts , Bayes Theorem , Computer Simulation , Humans , Models, Theoretical , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio
9.
Front Neurosci ; 11: 180, 2017.
Article in English | MEDLINE | ID: mdl-28566997

ABSTRACT

Quantification of dynamic causal interactions among brain regions constitutes an important component of conducting research and developing applications in experimental and translational neuroscience. Furthermore, cortical networks with dynamic causal connectivity in brain-computer interface (BCI) applications offer a more comprehensive view of brain states implicated in behavior than do individual brain regions. However, models of cortical network dynamics are difficult to generalize across subjects because current electroencephalography (EEG) signal analysis techniques are limited in their ability to reliably localize sources across subjects. We propose an algorithmic and computational framework for identifying cortical networks across subjects in which dynamic causal connectivity is modeled among user-selected cortical regions of interest (ROIs). We demonstrate the strength of the proposed framework using a "reach/saccade to spatial target" cognitive task performed by 10 right-handed individuals. Modeling of causal cortical interactions was accomplished through measurement of cortical activity using (EEG), application of independent component clustering to identify cortical ROIs as network nodes, estimation of cortical current density using cortically constrained low resolution electromagnetic brain tomography (cLORETA), multivariate autoregressive (MVAR) modeling of representative cortical activity signals from each ROI, and quantification of the dynamic causal interaction among the identified ROIs using the Short-time direct Directed Transfer function (SdDTF). The resulting cortical network and the computed causal dynamics among its nodes exhibited physiologically plausible behavior, consistent with past results reported in the literature. This physiological plausibility of the results strengthens the framework's applicability in reliably capturing complex brain functionality, which is required by applications, such as diagnostics and BCI.

10.
Neuroimage ; 150: 239-249, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28238938

ABSTRACT

Conventional neuroimaging analyses have ascribed function to particular brain regions, exploiting the power of the subtraction technique in fMRI and event-related potential analyses in EEG. Moving beyond this convention, many researchers have begun exploring network-based neurodynamics and coordination between brain regions as a function of behavioral parameters or environmental statistics; however, most approaches average evoked activity across the experimental session to study task-dependent networks. Here, we examined on-going oscillatory activity as measured with EEG and use a methodology to estimate directionality in brain-behavior interactions. After source reconstruction, activity within specific frequency bands (delta: 2-3Hz; theta: 4-7Hz; alpha: 8-12Hz; beta: 13-25Hz) in a priori regions of interest was linked to continuous behavioral measurements, and we used a predictive filtering scheme to estimate the asymmetry between brain-to-behavior and behavior-to-brain prediction using a variant of Granger causality. We applied this approach to a simulated driving task and examined directed relationships between brain activity and continuous driving performance (steering behavior or vehicle heading error). Our results indicated that two neuro-behavioral states may be explored with this methodology: a Proactive brain state that actively plans the response to the sensory information and is characterized by delta-beta activity, and a Reactive brain state that processes incoming information and reacts to environmental statistics primarily within the alpha band.


Subject(s)
Automobile Driving , Brain Mapping/methods , Brain/physiology , Psychomotor Performance/physiology , Adolescent , Adult , Behavior/physiology , Electroencephalography , Female , Humans , Male , Signal Processing, Computer-Assisted , Young Adult
11.
Comput Intell Neurosci ; 2016: 9754813, 2016.
Article in English | MEDLINE | ID: mdl-27340397

ABSTRACT

Independent component analysis (ICA) is a class of algorithms widely applied to separate sources in EEG data. Most ICA approaches use optimization criteria derived from temporal statistical independence and are invariant with respect to the actual ordering of individual observations. We propose a method of mapping real signals into a complex vector space that takes into account the temporal order of signals and enforces certain mixing stationarity constraints. The resulting procedure, which we call Pairwise Complex Independent Component Analysis (PWC-ICA), performs the ICA in a complex setting and then reinterprets the results in the original observation space. We examine the performance of our candidate approach relative to several existing ICA algorithms for the blind source separation (BSS) problem on both real and simulated EEG data. On simulated data, PWC-ICA is often capable of achieving a better solution to the BSS problem than AMICA, Extended Infomax, or FastICA. On real data, the dipole interpretations of the BSS solutions discovered by PWC-ICA are physically plausible, are competitive with existing ICA approaches, and may represent sources undiscovered by other ICA methods. In conjunction with this paper, the authors have released a MATLAB toolbox that performs PWC-ICA on real, vector-valued signals.


Subject(s)
Brain Mapping , Brain/physiology , Electroencephalography , Principal Component Analysis , Signal Processing, Computer-Assisted , Algorithms , Brain/diagnostic imaging , Computer Simulation , Humans , Models, Statistical
12.
Sci Rep ; 6: 21353, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26882993

ABSTRACT

Fluctuations in attention behind the wheel poses a significant risk for driver safety. During transient periods of inattention, drivers may shift their attention towards internally-directed thoughts or feelings at the expense of staying focused on the road. This study examined whether increasing task difficulty by manipulating involved sensory modalities as the driver detected the lane-departure in a simulated driving task would promote a shift of brain activity between different modes of processing, reflected by brain network dynamics on electroencephalographic sources. Results showed that depriving the driver of salient sensory information imposes a relatively more perceptually-demanding task, leading to a stronger activation in the task-positive network. When the vehicle motion feedback is available, the drivers may rely on vehicle motion to perceive the perturbations, which frees attentional capacity and tends to activate the default mode network. Such brain network dynamics could have major implications for understanding fluctuations in driver attention and designing advance driver assistance systems.


Subject(s)
Attention , Automobile Driving/psychology , Brain/physiology , Brain Mapping , Electroencephalography , Humans , Magnetic Resonance Imaging , Psychomotor Performance
13.
IEEE Trans Neural Syst Rehabil Eng ; 24(3): 309-19, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26685257

ABSTRACT

Independent component analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and validate an optimized online recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind source separation of high-density EEG data, which offers instantaneous incremental convergence upon presentation of new data. Empirical results of this study demonstrate the algorithm's: 1) suitability for accurate and efficient source identification in high-density (64-channel) realistically-simulated EEG data; 2) capability to detect and adapt to nonstationarity in 64-ch simulated EEG data; and 3) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection, feature extraction for real-time biosignal monitoring in clinical environments, and adaptable classifications in brain-computer interfaces.


Subject(s)
Brain-Computer Interfaces , Electroencephalography/instrumentation , Algorithms , Artifacts , Brain/physiology , Brain Mapping , Electroencephalography/statistics & numerical data , Humans , Least-Squares Analysis , Principal Component Analysis , Signal Processing, Computer-Assisted
14.
IEEE Trans Biomed Eng ; 62(11): 2553-67, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26415149

ABSTRACT

GOAL: We present and evaluate a wearable high-density dry-electrode EEG system and an open-source software framework for online neuroimaging and state classification. METHODS: The system integrates a 64-channel dry EEG form factor with wireless data streaming for online analysis. A real-time software framework is applied, including adaptive artifact rejection, cortical source localization, multivariate effective connectivity inference, data visualization, and cognitive state classification from connectivity features using a constrained logistic regression approach (ProxConn). We evaluate the system identification methods on simulated 64-channel EEG data. Then, we evaluate system performance, using ProxConn and a benchmark ERP method, in classifying response errors in nine subjects using the dry EEG system. RESULTS: Simulations yielded high accuracy (AUC = 0.97 ± 0.021) for real-time cortical connectivity estimation. Response error classification using cortical effective connectivity [short-time direct-directed transfer function (sdDTF)] was significantly above chance with similar performance (AUC) for cLORETA (0.74 ±0.09) and LCMV (0.72 ±0.08) source localization. Cortical ERP-based classification was equivalent to ProxConn for cLORETA (0.74 ±0.16) but significantly better for LCMV (0.82 ±0.12) . CONCLUSION: We demonstrated the feasibility for real-time cortical connectivity analysis and cognitive state classification from high-density wearable dry EEG. SIGNIFICANCE: This paper is the first validated application of these methods to 64-channel dry EEG. This study addresses a need for robust real-time measurement and interpretation of complex brain activity in the dynamic environment of the wearable setting. Such advances can have broad impact in research, medicine, and brain-computer interfaces. The pipelines are made freely available in the open-source SIFT and BCILAB toolboxes.


Subject(s)
Brain/physiology , Cognition/physiology , Electroencephalography/instrumentation , Neuroimaging/instrumentation , Adult , Algorithms , Brain-Computer Interfaces , Electroencephalography/methods , Humans , Male , Neuroimaging/methods , Task Performance and Analysis , Young Adult
15.
Front Neuroinform ; 9: 16, 2015.
Article in English | MEDLINE | ID: mdl-26150785

ABSTRACT

The technology to collect brain imaging and physiological measures has become portable and ubiquitous, opening the possibility of large-scale analysis of real-world human imaging. By its nature, such data is large and complex, making automated processing essential. This paper shows how lack of attention to the very early stages of an EEG preprocessing pipeline can reduce the signal-to-noise ratio and introduce unwanted artifacts into the data, particularly for computations done in single precision. We demonstrate that ordinary average referencing improves the signal-to-noise ratio, but that noisy channels can contaminate the results. We also show that identification of noisy channels depends on the reference and examine the complex interaction of filtering, noisy channel identification, and referencing. We introduce a multi-stage robust referencing scheme to deal with the noisy channel-reference interaction. We propose a standardized early-stage EEG processing pipeline (PREP) and discuss the application of the pipeline to more than 600 EEG datasets. The pipeline includes an automatically generated report for each dataset processed. Users can download the PREP pipeline as a freely available MATLAB library from http://eegstudy.org/prepcode.

16.
Can J Anaesth ; 62(5): 495-503, 2015 May.
Article in English | MEDLINE | ID: mdl-25637060

ABSTRACT

PURPOSE: We sought to determine the rate of successful identification of the cricothyroid membrane by anesthesia residents and staff at a Canadian institution. METHODS: In this prospective study, healthy adult volunteer subjects were positioned supine with their necks placed in neutral position. There were 12 subjects, half of whom were non-obese (body mass index < 30.0 kg·m(2)) and half of whom were obese. There were equal numbers of male and female subjects in each of the obese and non-obese groups. Anesthesia staff and resident participants were allowed to palpate multiple subjects but with only one attempt per subject. For each subject, ultrasonography was used to identify the superior and inferior borders of the cricothyroid membrane, which were then marked with "invisible" ink that could be made visible with ultraviolet light. The midline was also marked with invisible ink. Identification of the cricothyroid membrane was considered correct if the mark was between the superior and inferior borders and within 0.5 cm of the midline. RESULTS: Altogether, 61 participants palpated 12 subjects, resulting in 186 identifications. The success rates for the subgroups were as follows: non-obese men 72% (95% confidence interval [CI] 59 to 85%); obese men 39% (95% CI 26 to 54%); non-obese women 24% (95% CI 12 to 36%); obese women 35% (95% CI 21 to 49%). CONCLUSION: Success rates for correct identification of the cricothyroid membrane were poor in this Canadian institution.


Subject(s)
Anesthesiology/methods , Cricoid Cartilage/anatomy & histology , Obesity/metabolism , Thyroid Cartilage/anatomy & histology , Adult , Canada , Clinical Competence , Cricoid Cartilage/diagnostic imaging , Female , Humans , Internship and Residency , Male , Middle Aged , Prospective Studies , Thyroid Cartilage/diagnostic imaging , Ultrasonography , Young Adult
17.
Front Hum Neurosci ; 8: 370, 2014.
Article in English | MEDLINE | ID: mdl-24917804

ABSTRACT

EEG-based Brain-computer interfaces (BCI) are facing basic challenges in real-world applications. The technical difficulties in developing truly wearable BCI systems that are capable of making reliable real-time prediction of users' cognitive states in dynamic real-life situations may seem almost insurmountable at times. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report an attempt to develop a pervasive on-line EEG-BCI system using state-of-art technologies including multi-tier Fog and Cloud Computing, semantic Linked Data search, and adaptive prediction/classification models. To verify our approach, we implement a pilot system by employing wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end Fog Servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end Cloud Servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line EEG-BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch to use our system in real-life personal stress monitoring and the UCSD Movement Disorder Center to conduct in-home Parkinson's disease patient monitoring experiments. We shall proceed to develop the necessary BCI ontology and introduce automatic semantic annotation and progressive model refinement capability to our system.

18.
Ann Biomed Eng ; 42(8): 1573-93, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24833254

ABSTRACT

Traditional approaches for neurological rehabilitation of patients affected with movement disorders, such as Parkinson's disease (PD), dystonia, and essential tremor (ET) consist mainly of oral medication, physical therapy, and botulinum toxin injections. Recently, the more invasive method of deep brain stimulation (DBS) showed significant improvement of the physical symptoms associated with these disorders. In the past several years, the adoption of feedback control theory helped DBS protocols to take into account the progressive and dynamic nature of these neurological movement disorders that had largely been ignored so far. As a result, a more efficient and effective management of PD cardinal symptoms has emerged. In this paper, we review closed-loop systems for rehabilitation of movement disorders, focusing on PD, for which several invasive and noninvasive methods have been developed during the last decade, reducing the complications and side effects associated with traditional rehabilitation approaches and paving the way for tailored individual therapeutics. We then present a novel, transformative, noninvasive closed-loop framework based on force neurofeedback and discuss several future developments of closed-loop systems that might bring us closer to individualized solutions for neurological rehabilitation of movement disorders.


Subject(s)
Movement Disorders/therapy , Animals , Brain/physiology , Feedback, Physiological , Humans , Neuronal Plasticity
19.
Front Neurol ; 4: 209, 2014.
Article in English | MEDLINE | ID: mdl-24409167

ABSTRACT

Freezing of gait (FOG) is an elusive phenomenon that debilitates a large number of Parkinson's disease (PD) patients regardless of stage of disease, medication status, or deep brain stimulation implantation. Sensory feedback cues, especially visual feedback cues, have been shown to alleviate FOG episodes or even prevent episodes from occurring. Here, we examine cortical information flow between occipital, parietal, and motor areas during the pre-movement stage of gait in a PD-with-FOG patient that had a strong positive behavioral response to visual cues, one PD-with-FOG patient without any behavioral response to visual cues, and age-matched healthy controls, before and after training with visual feedback. Results for this case study show differences in cortical information flow between the responding PD-with-FOG patient and the other two subject types, notably, an increased information flow in the beta range. Tentatively suggesting the formation of an alternative cortical sensory-motor pathway during training with visual feedback, these results are proposed as subject for further verification employing larger cohorts of patients.

20.
Article in English | MEDLINE | ID: mdl-25570830

ABSTRACT

Online Independent Component Analysis (ICA) algorithms have recently seen increasing development and application across a range of fields, including communications, biosignal processing, and brain-computer interfaces. However, prior work in this domain has primarily focused on algorithmic proofs of convergence, with application limited to small `toy' examples or to relatively low channel density EEG datasets. Furthermore, there is limited availability of computationally efficient online ICA implementations, suitable for real-time application. This study describes an optimized online recursive ICA algorithm (ORICA), with online recursive least squares (RLS) whitening, for blind source separation of high-density EEG data. It is implemented as an online-capable plugin within the open-source BCILAB (EEGLAB) framework. We further derive and evaluate a block-update modification to the ORICA learning rule. We demonstrate the algorithm's suitability for accurate and efficient source identification in high density (64-channel) realistically-simulated EEG data, as well as real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment.


Subject(s)
Algorithms , Electroencephalography , Brain/physiopathology , Brain-Computer Interfaces , Humans , Least-Squares Analysis , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...