Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Ecol Evol ; 7(11): 1834-1843, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37679456

ABSTRACT

Virus transmission between host species underpins disease emergence. Both host phylogenetic relatedness and aspects of their ecology, such as species interactions and predator-prey relationships, may govern rates and patterns of cross-species virus transmission and hence zoonotic risk. To address the impact of host phylogeny and ecology on virus diversity and evolution, we characterized the virome structure of a relatively isolated island ecological community in Fiordland, New Zealand, that are linked through a food web. We show that phylogenetic barriers that inhibited cross-species virus transmission occurred at the level of host phyla (between the Chordata, Arthropoda and Streptophyta) as well as at lower taxonomic levels. By contrast, host ecology, manifest as predator-prey interactions and diet, had a smaller influence on virome composition, especially at higher taxonomic levels. The virus-host community comprised a 'small world' network, in which hosts with a high diversity of viruses were more likely to acquire new viruses, and generalist viruses that infect multiple hosts were more likely to infect additional species compared to host specialist viruses. Such a highly connected ecological community increases the likelihood of cross-species virus transmission, particularly among closely related species, and suggests that host generalist viruses present the greatest risk of disease emergence.


Subject(s)
Ecology , Ecosystem , Phylogeny , Host Specificity , New Zealand
2.
Mar Pollut Bull ; 52(4): 442-6, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16487982

ABSTRACT

New Zealand fur seals in the Kaikoura region breed near a town with expanding tourist and fishing industries and commonly come ashore entangled in nets and plastic debris. However, the rate at which entanglement occurs was previously unknown. A decade of Department of Conservation seal callout data was analysed to determine the level of entanglement in the region and the most common debris type. Monitoring of adult female fur seals released from entanglement provided information on the potential for serious wounds to heal and survivorship of released individuals. Entanglement rates of pinnipeds in Kaikoura are some of the highest reported world-wide (average range: 0.6-2.8%) with green trawl net (42%), and plastic strapping tape (31%) together contributing the most to debris types. Nearly half of the reported entangled seals are successfully released (43%) and post-release monitoring shows that with appropriate intervention the chance of an individual surviving even with a significant entanglement wound is high. Our study demonstrates that while entanglement in the region is high, a successful intervention protocol may help reduce the potential for entanglement-related mortality in the region.


Subject(s)
Environmental Monitoring , Fur Seals/physiology , Water Pollution/statistics & numerical data , Animal Population Groups/physiology , Animals , Data Collection/methods , Female , Fisheries , Humans , New Zealand , Water Pollution/adverse effects , Water Pollution/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...