Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Immunol ; 24(5): 869-883, 2023 05.
Article in English | MEDLINE | ID: mdl-37081150

ABSTRACT

To date, no immunotherapy approaches have managed to fully overcome T-cell exhaustion, which remains a mandatory fate for chronically activated effector cells and a major therapeutic challenge. Understanding how to reprogram CD8+ tumor-infiltrating lymphocytes away from exhausted effector states remains an elusive goal. Our work provides evidence that orthogonal gene engineering of T cells to secrete an interleukin (IL)-2 variant binding the IL-2Rßγ receptor and the alarmin IL-33 reprogrammed adoptively transferred T cells to acquire a novel, synthetic effector state, which deviated from canonical exhaustion and displayed superior effector functions. These cells successfully overcame homeostatic barriers in the host and led-in the absence of lymphodepletion or exogenous cytokine support-to high levels of engraftment and tumor regression. Our work unlocks a new opportunity of rationally engineering synthetic CD8+ T-cell states endowed with the ability to avoid exhaustion and control advanced solid tumors.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy, Adoptive , Interleukin-2 , Neoplasms, Experimental , CD8-Positive T-Lymphocytes/immunology , T-Cell Exhaustion , Lymphocytes, Tumor-Infiltrating/immunology , Interleukin-2/pharmacology , Interleukin-33 , Protein Engineering , Female , Animals , Mice , Mice, Inbred C57BL , Cell Line, Tumor , Neoplasms, Experimental/therapy , Programmed Cell Death 1 Receptor/metabolism
2.
Int J Mol Sci ; 23(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35328343

ABSTRACT

Targeting cannabinoid 1 receptors (CB1R) with peripherally restricted antagonists (or inverse agonists) shows promise to improve metabolic disorders associated with obesity. In this context, we designed and synthetized JM-00266, a new CB1R blocker with limited blood-brain barrier (BBB) permeability. Pharmacokinetics were tested with SwissADME and in vivo in rodents after oral and intraperitoneal administration of JM-00266 in comparison with Rimonabant. In silico predictions indicated JM-00266 is a non-brain penetrant compound and this was confirmed by brain/plasma ratios and brain uptake index values. JM-00266 had no impact on food intake, anxiety-related behavior and body temperature suggesting an absence of central activity. cAMP assays performed in CB1R-transfected HEK293T/17 cells showed that the drug exhibited inverse agonist activity on CB1R. In addition, JM-00266 counteracted anandamide-induced gastroparesis indicating substantial peripheral activity. Acute administration of JM-00266 also improved glucose tolerance and insulin sensitivity in wild-type mice, but not in CB1R-/- mice. Furthermore, the accumulation of JM-00266 in adipose tissue was associated with an increase in lipolysis. In conclusion, JM-00266 or derivatives can be predicted as a new candidate for modulating peripheral endocannabinoid activity and improving obesity-related metabolic disorders.


Subject(s)
Cannabinoid Receptor Antagonists , Metabolic Diseases , Animals , Cannabinoid Receptor Antagonists/pharmacology , HEK293 Cells , Humans , Mice , Obesity/drug therapy , Obesity/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptors, Cannabinoid
3.
Front Endocrinol (Lausanne) ; 12: 716431, 2021.
Article in English | MEDLINE | ID: mdl-34434170

ABSTRACT

White adipose tissue (WAT) possesses the endocannabinoid system (ECS) machinery and produces the two major endocannabinoids (ECs), arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). Accumulating evidence indicates that WAT cannabinoid 1 receptors (CB1R) are involved in the regulation of fat storage, tissue remodeling and secretory functions but their role in controlling lipid mobilization is unclear. In the present study, we used different strategies to acutely increase ECS activity in WAT and tested the consequences on glycerol production as a marker of lipolysis. Treating lean mice or rat WAT explants with JLZ195, which inhibits ECs degrading enzymes, induced an increase in 2-AG tissue contents that was associated with a CB1R-dependent decrease in lipolysis. Direct treatment of rat WAT explants with AEA also inhibited glycerol production while mechanistic studies revealed it could result from the stimulation of Akt-signaling pathway. Interestingly, AEA treatment decreased lipolysis both in visceral and subcutaneous WAT collected on lean subjects suggesting that ECS also reduces fat store mobilization in Human. In obese mice, WAT content and secretion rate of ECs were higher than in control while glycerol production was reduced suggesting that over-produced ECs may inhibit lipolysis activating local CB1R. Strikingly, our data also reveal that acute CB1R blockade with Rimonabant did not modify lipolysis in vitro in obese mice and human explants nor in vivo in obese mice. Taken together, these data provide physiological evidence that activation of ECS in WAT, by limiting fat mobilization, may participate in the progressive tissue remodeling that could finally lead to organ dysfunction. The present findings also indicate that acute CB1R blockade is inefficient in regulating lipolysis in obese WAT and raise the possibility of an alteration of CB1R signaling in conditions of obesity.


Subject(s)
Adipose Tissue, White/pathology , Endocannabinoids/metabolism , Lipid Metabolism , Lipolysis , Obesity/pathology , Receptor, Cannabinoid, CB1/metabolism , Thinness/pathology , Adipose Tissue, White/metabolism , Adult , Animals , Case-Control Studies , Humans , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Rats , Thinness/metabolism
4.
Diabetes ; 69(10): 2120-2132, 2020 10.
Article in English | MEDLINE | ID: mdl-32680936

ABSTRACT

Diabetic dyslipidemia, characterized by increased plasma triglycerides and decreased HDL cholesterol levels, is a major factor contributing to nonalcoholic steatohepatitis and cardiovascular risk in type 2 diabetes. Activation of the cannabinoid-1 receptor (CB1R) and activation of inducible nitric oxide synthase (iNOS) are associated with nonalcoholic steatohepatitis progression. Here, we tested whether dual-targeting inhibition of hepatic CB1R and iNOS improves diabetic dyslipidemia in mice with diet-induced obesity (DIO mice). DIO mice were treated for 14 days with (S)-MRI-1867, a peripherally restricted hybrid inhibitor of CB1R and iNOS. (R)-MRI-1867, the CB1R-inactive stereoisomer that retains iNOS inhibitory activity, and JD-5037, a peripherally restricted CB1R antagonist, were used to assess the relative contribution of the two targets to the effects of (S)-MRI-1867. (S)-MRI-1867 reduced hepatic steatosis and the rate of hepatic VLDL secretion, upregulated hepatic LDLR expression, and reduced the circulating levels of proprotein convertase subtilisin/kexin type 9 (PCSK9). The decrease in VLDL secretion could be attributed to CB1R blockade, while the reduction of PCSK9 levels and the related increase in LDLR resulted from iNOS inhibition via an mTOR complex 1-dependent mechanism. In conclusion, this approach based on the concomitant inhibition of CB1R and iNOS represents a promising therapeutic strategy for the treatment of dyslipidemia.


Subject(s)
Dyslipidemias/metabolism , Liver/metabolism , Nitric Oxide Synthase Type II/metabolism , Obesity/metabolism , Receptor, Cannabinoid, CB1/metabolism , Animals , Cells, Cultured , Glucose , Hepatocytes/metabolism , Immunoblotting , Lipid Metabolism/physiology , Lipoproteins/metabolism , Male , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction
5.
Cell Death Dis ; 10(7): 485, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217433

ABSTRACT

Limitation of 5-fluorouracil (5-FU) anticancer efficacy is due to IL-1ß secretion by myeloid-derived suppressor cells (MDSC), according to a previous pre-clinical report. Release of mature IL-1ß is a consequence of 5-FU-mediated NLRP3 activation and subsequent caspase-1 activity in MDSC. IL-1ß sustains tumor growth recovery in 5-FU-treated mice. Docosahexaenoic acid (DHA) belongs to omega-3 fatty acid family and harbors both anticancer and anti-inflammatory properties, which could improve 5-FU chemotherapy. Here, we demonstrate that DHA inhibits 5-FU-induced IL-1ß secretion and caspase-1 activity in a MDSC cell line (MSC-2). Accordingly, we showed that DHA-enriched diet reduces circulating IL-1ß concentration and tumor recurrence in 5-FU-treated tumor-bearing mice. Treatment with 5-FU led to JNK activation through ROS production in MDSC. JNK inhibitor SP600125 as well as DHA-mediated JNK inactivation decreased IL-1ß secretion. The repression of 5-FU-induced caspase-1 activity by DHA supplementation is partially due to ß-arrestin-2-dependent inhibition of NLRP3 inflammasome activity but was independent of JNK pathway. Interestingly, we showed that DHA, through ß-arrestin-2-mediated inhibition of JNK pathway, reduces V5-tagged mature IL-1ß release induced by 5-FU, in MDSC stably overexpressing a V5-tagged mature IL-1ß form. Finally, we found a negative correlation between DHA content in plasma and the induction of caspase-1 activity in HLA-DR- CD33+ CD15+ MDSC of patients treated with 5-FU-based chemotherapy, strongly suggesting that our data are clinical relevant. Together, these data provide new insights on the regulation of IL-1ß secretion by DHA and on its potential benefit in 5-FU-based chemotherapy.


Subject(s)
Docosahexaenoic Acids/pharmacology , Fluorouracil/pharmacology , Inflammasomes/drug effects , Inflammasomes/metabolism , Interleukin-1beta/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Caspase 1/metabolism , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Docosahexaenoic Acids/therapeutic use , Female , Fluorouracil/therapeutic use , Humans , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , beta-Arrestin 2/metabolism
6.
Am J Physiol Endocrinol Metab ; 313(1): E26-E36, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28325733

ABSTRACT

Evidence has accumulated that obesity-related metabolic dysregulation is associated with overactivation of the endocannabinoid system (ECS), which involves cannabinoid receptor 1 (CB1R), in peripheral tissues, including adipose tissue (AT). The functional consequences of CB1R activation on AT metabolism remain unclear. Since excess fat mobilization is considered an important primary event contributing to the onset of insulin resistance, we combined in vivo and in vitro experiments to investigate whether activation of ECS could alter the lipolytic rate. For this purpose, the appearance of plasma glycerol was measured in wild-type and CB1R-/- mice after acute anandamide administration or inhibition of endocannabinoid degradation by JZL195. Additional experiments were conducted on rat AT explants to evaluate the direct consequences of ECS activation on glycerol release and signaling pathways. Treatments stimulated glycerol release in mice fasted for 6 h and injected with glucose but not in 24-h fasted mice or in CB1R-/-, suggesting that the effect was dependent on plasma insulin levels and mediated by CB1R. We concomitantly observed that Akt cascade activity was decreased, indicating an alteration of the antilipolytic action of insulin. Similar results were obtained with tissue explants exposed to anandamide, thus identifying CB1R of AT as a major target. This study indicates the existence of a functional interaction between CB1R and lipolysis regulation in AT. Further investigation is needed to test if the elevation of ECS tone encountered in obesity is associated with excess fat mobilization contributing to ectopic fat deposition and related metabolic disorders.


Subject(s)
Adipose Tissue/physiology , Endocannabinoids/metabolism , Insulin Resistance/physiology , Insulin/blood , Lipolysis/physiology , Receptor, Cannabinoid, CB1/metabolism , Animals , Fatty Acids, Nonesterified/biosynthesis , Hydrolysis , Male , Mice , Mice, Inbred C57BL , Up-Regulation/physiology
7.
Diabetes ; 65(7): 1824-37, 2016 07.
Article in English | MEDLINE | ID: mdl-27207550

ABSTRACT

Evidence suggests that alterations of glucose and lipid homeostasis induced by obesity are associated with the elevation of endocannabinoid tone. The biosynthesis of the two main endocannabinoids, N-arachidonoylethanolamine and 2-arachidonoyl-glycerol, which derive from arachidonic acid, is influenced by dietary fatty acids (FAs). We investigated whether exposure to n-3 FA at a young age may decrease tissue endocannabinoid levels and prevent metabolic disorders induced by a later high-fat diet (HFD) challenge. Three-week-old mice received a 5% lipid diet containing lard, lard plus safflower oil, or lard plus linseed oil for 10 weeks. Then, mice were challenged with a 30% lard diet for 10 additional weeks. A low n-6/n-3 FA ratio in the early diet induces a marked decrease in liver endocannabinoid levels. A similar reduction was observed in transgenic Fat-1 mice, which exhibit high tissue levels of n-3 FA compared with wild-type mice. Hepatic expression of key enzymes involved in carbohydrate and lipid metabolism was concomitantly changed. Interestingly, some gene modifications persisted after HFD challenge and were associated with improved glycemic control. These findings indicate that early dietary interventions based on n-3 FA may represent an alternative strategy to drugs for reducing endocannabinoid tone and improving metabolic parameters in the metabolic syndrome.


Subject(s)
Blood Glucose/metabolism , Endocannabinoids/metabolism , Liver/metabolism , alpha-Linolenic Acid/administration & dosage , Animals , Body Weight/physiology , Carbohydrate Metabolism/genetics , Diet, Fat-Restricted , Diet, High-Fat , Fatty Liver/metabolism , Homeostasis/physiology , Lipid Metabolism/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Obesity/metabolism
8.
Ciênc. rural ; 46(2): 210-215, fev. 2016. tab, graf
Article in English | LILACS | ID: lil-767653

ABSTRACT

Nitrogen (N) is the most limiting nutrient for corn production. Thereby, the goal of the paper was to evaluate inoculation methods of Azospirillum brasilense in order to partially supply N required by the crop. The experiment was carried out in Guarapuava, PR, Brasil, in 2011/2012 growing season. Randomized blocks with factorial 3 inoculation methods (seed treatment, planting furrow and non-inoculated control) x 5 doses of nitrogen (0, 75, 150, 225 and 300kg ha-1) x 8 replications was used as the experimental design. Leaf are index, foliar nitrogen content, total chlorophyll, grains per ear and yield were evaluated. There was significant interaction between inoculation methods and nitrogen fertilization to leaf area index, but not for yield. Inoculation with the diazotrophic bacteria provided yield increase of 702kg ha-1 for inoculation in seeding furrow and 432kg ha-1 for inoculation in seed treatment compared to the control, but both treatments did not differ between each other. Furthermore, total chlorophyll, grains per ear and yield were positively affected, with quadratic response, by the nitrogen fertilization in broadcasting.


O nitrogênio (N) é o nutriente que mais limita a produtividade da cultura do milho. Dessa forma, o objetivo deste trabalho foi avaliar métodos de inoculação de Azospirillum brasilense para suprir em parte o nitrogênio requerido pela cultura. O experimento foi conduzido em Guarapuava, PR, Brasil, no ano agrícola de 2011/2012. Os tratamentos foram dispostos em delineamento de blocos ao acaso, em esquema fatorial 3 métodos de inoculação (tratamento de sementes, sulco de plantio e controle não inoculado) x 5 doses de nitrogênio (0, 75, 150, 225 e 300kg ha-1), com oito repetições. As variáveis analisadas foram: índice de área foliar (IAF), teor de N foliar, clorofila total, grãos por espiga e produtividade. Houve interação significativa entre os métodos de inoculação e a adubação nitrogenada para a variável IAF, mas não para a produtividade. Concluiu-se que a inoculação com a bactéria proporcionou incremento na produtividade de 702kg ha-1 para inoculação no sulco de semeadura e de 432kg ha-1 no tratamento de sementes, comparado com o controle, mas não houve diferença significativa entre esses dois tratamentos. Além disso, o teor de clorofila total, número de grãos por espiga e produtividade foram afetados positivamente, obtendo-se resposta quadrática, com aplicação da adubação nitrogenada.

9.
Diabetes ; 64(3): 808-18, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25281429

ABSTRACT

The endocannabinoid system (ECS) is associated with an alteration of glucose homeostasis dependent on cannabinoid receptor-1 (CB1R) activation. However, very little information is available concerning the consequences of ECS activation on intestinal glucose absorption. Mice were injected intraperitoneally with anandamide, an endocannabinoid binding both CB1R and CB2R. We measured plasma glucose and xylose appearance after oral loading, gastrointestinal motility, and glucose transepithelial transport using the everted sac method. Anandamide improved hyperglycemia after oral glucose charge whereas glucose clearance and insulin sensitivity were impaired, pointing out some gastrointestinal events. Plasma xylose appearance was delayed in association with a strong decrease in gastrointestinal transit, while anandamide did not alter transporter-mediated glucose absorption. Interestingly, transit was nearly normalized by coinjection of SR141716 and AM630 (CB1R and CB2R antagonist, respectively), and AM630 also reduced the delay of plasma glucose appearance induced by anandamide. When gastric emptying was bypassed by direct glucose administration in the duodenum, anandamide still reduced plasma glucose appearance in wild-type but not in CB1R(-/-) mice. In conclusion, our findings demonstrated that acute activation of intestinal ECS reduced postprandial glycemia independently on intestinal glucose transport but rather inhibiting gastric emptying and small intestine motility and strongly suggest the involvement of both CB1R and CB2R.


Subject(s)
Arachidonic Acids/pharmacology , Endocannabinoids/pharmacology , Gastrointestinal Motility/drug effects , Polyunsaturated Alkamides/pharmacology , Receptors, Cannabinoid/metabolism , Animals , Blood Glucose/drug effects , Gastrointestinal Transit/drug effects , Hyperglycemia/prevention & control , Indoles/pharmacology , Male , Mice , Mice, Inbred C57BL , Piperidines/pharmacology , Postprandial Period , Pyrazoles/pharmacology , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Rimonabant
10.
Petrópolis; DP et Alii;ABPN; 2012. 319 p. (Negras e Negros: Pesquisas e Debates).
Monography in Portuguese | Sec. Munic. Saúde SP, AHM-Acervo, TATUAPE-Acervo, EMS-Acervo | ID: sms-4960
11.
Petrópolis; ABPN;DP et Alii; 2 ed., rev., ampl; 2012. 372 p. (Negras e Negros: Pesquisas e Debates).
Monography in Portuguese | Sec. Munic. Saúde SP, AHM-Acervo, TATUAPE-Acervo, EMS-Acervo | ID: sms-5483
12.
Plant Cell ; 14(7): 1541-55, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12119373

ABSTRACT

The phytochrome family of plant photoreceptors has a central role in the adaptation of plant development to changes in ambient light conditions. The individual phytochrome species regulate different or partly overlapping physiological responses. We generated transgenic Arabidopsis plants expressing phytochrome A to E:green fluorescent protein (GFP) fusion proteins to assess the biological role of intracellular compartmentation of these photoreceptors in light-regulated signaling. We show that all phytochrome:GFP fusion proteins were imported into the nuclei. Translocation of these photoreceptors into the nuclei was regulated differentially by light. Light-induced accumulation of phytochrome species in the nuclei resulted in the formation of speckles. The appearance of these nuclear structures exhibited distinctly different kinetics, wavelengths, and fluence dependence and was regulated by a diurnal rhythm. Furthermore, we demonstrate that the import of mutant phytochrome B:GFP and phytochrome A:GFP fusion proteins, shown to be defective in signaling in vivo, is regulated by light but is not accompanied by the formation of speckles. These results suggest that (1) the differential regulation of the translocation of phytochrome A to E into nuclei plays a role in the specification of functions, and (2) the appearance of speckles is a functional feature of phytochrome-regulated signaling.


Subject(s)
Arabidopsis/metabolism , Circadian Rhythm/physiology , Photoreceptor Cells , Phytochrome/metabolism , Transcription Factors , Active Transport, Cell Nucleus/radiation effects , Apoproteins/genetics , Apoproteins/metabolism , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Nucleus/metabolism , Cell Nucleus/radiation effects , Cell Nucleus/ultrastructure , Green Fluorescent Proteins , Light , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Microscopy, Immunoelectron , Mutation , Phytochrome/genetics , Phytochrome A , Phytochrome B , Plants, Genetically Modified , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/radiation effects , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...