Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
J Physiol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861348

ABSTRACT

Older adults are vulnerable to glucocorticoid-induced muscle atrophy and weakness, with sex potentially influencing their susceptibility to those effects. Aerobic exercise can reduce glucocorticoid-induced muscle atrophy in young rodents. However, it is unknown whether aerobic exercise can prevent glucocorticoid myopathy in aged muscle. The objectives of this study were to define the extent to which sex influences the development of glucocorticoid myopathy in aged muscle, and to determine the extent to which aerobic exercise training protects against myopathy development. Twenty-four-month-old female (n = 30) and male (n = 33) mice were randomized to either sedentary or aerobic exercise groups. Within their respective groups, mice were randomized to either daily treatment with dexamethasone (DEX) or saline. Upon completing treatments, the contractile properties of the triceps surae complex were assessed in situ. DEX marginally lowered muscle mass and soluble protein content in both sexes, which was attenuated by aerobic exercise only in females. DEX increased sub-tetanic force and rate of force development only in females, which was not influenced by aerobic exercise. Muscle fatigue was higher in both sexes following DEX, but aerobic exercise prevented fatigue induction only in females. The sex-specific differences to muscle function in response to DEX treatment coincided with sex-specific changes to the content of proteins related to calcium handling, mitochondrial quality control, reactive oxygen species production, and glucocorticoid receptor in muscle. These findings define several important sexually dimorphic changes to aged skeletal muscle physiology in response to glucocorticoid treatment and define the capacity of short-term aerobic exercise to protect against those changes. KEY POINTS: There are sexually dimorphic effects of glucocorticoids on aged skeletal muscle physiology. Glucocorticoid-induced changes to aged muscle contractile properties coincide with sex-specific differences in the content of calcium handling proteins. Aerobic exercise prevents glucocorticoid-induced fatigue only in aged females and coincides with differences in the content of mitochondrial quality control proteins and glucocorticoid receptors.

2.
JBMR Plus ; 8(3): ziad019, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38741608

ABSTRACT

The magnitude of bone formation and remodeling is linked to both the magnitude of strain placed on the bone and the perfusion of bone. It was previously reported that an increase in bone perfusion and bone density occurs in the femur of old rats with moderate aerobic exercise training. This study determined the acute and chronic effects of static muscle stretching on bone blood flow and remodeling. Old male Fischer 344 rats were randomized to either a naive or stretch-trained group. Static stretching of ankle flexor muscles was achieved by placement of a dorsiflexion splint on the left ankle for 30 min/d, 5d/wk for 4wk. The opposite hindlimb served as a contralateral control (nonstretched) limb. Bone blood flow was assessed during and after acute stretching in naive rats, and at rest and during exercise in stretch-trained rats. Vascular reactivity of the nutrient artery of the proximal tibia was also assessed in stretch-trained rats. MicroCT analysis was used to assess bone volume and micro-architecture of the trabecular bone of both tibias near that growth plate. In naive rats, static stretching increased blood flow to the proximal tibial metaphasis. Blood flow to the proximal tibial metaphysis during treadmill exercise was higher in the stretched limb after 4 wk of daily stretching. Daily stretching also increased tibial bone weight and increased total volume in both the proximal and distal tibial metaphyses. In the trabecular bone immediately below the proximal tibial growth plate, total volume and bone volume increased, but bone volume/total volume was unchanged and trabecular connectivity decreased. In contrast, intravascular volume increased in this region of the bone. These data suggest that blood flow to the tibia increases during bouts of static stretching of the hindlimb muscles, and that 4 wk of daily muscle stretching leads to bone remodeling and an increase in intravascular volume of the tibial bone.

3.
Microvasc Res ; 154: 104686, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614154

ABSTRACT

Pulmonary hypertension (PH) is a chronic, progressive condition in which respiratory muscle dysfunction is a primary contributor to exercise intolerance and dyspnea in patients. Contractile function, blood flow distribution, and the hyperemic response are altered in the diaphragm with PH, and we sought to determine whether this may be attributed, in part, to impaired vasoreactivity of the resistance vasculature. We hypothesized that there would be blunted endothelium-dependent vasodilation and impaired myogenic responsiveness in arterioles from the diaphragm of PH rats. Female Sprague-Dawley rats were randomized into healthy control (HC, n = 9) and monocrotaline-induced PH rats (MCT, n = 9). Endothelium-dependent and -independent vasodilation and myogenic responses were assessed in first-order arterioles (1As) from the medial costal diaphragm in vitro. There was a significant reduction in endothelium-dependent (via acetylcholine; HC, 78 ± 15% vs. MCT, 47 ± 17%; P < 0.05) and -independent (via sodium nitroprusside; HC, 89 ± 10% vs. MCT, 66 ± 10%; P < 0.05) vasodilation in 1As from MCT rats. MCT-induced PH also diminished myogenic constriction (P < 0.05) but did not alter passive pressure responses. The diaphragmatic weakness, impaired hyperemia, and blood flow redistribution associated with PH may be due, in part, to diaphragm vascular dysfunction and thus compromised oxygen delivery which occurs through both endothelium-dependent and -independent mechanisms.


Subject(s)
Diaphragm , Hypertension, Pulmonary , Rats, Sprague-Dawley , Vasodilation , Animals , Female , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/etiology , Arterioles/physiopathology , Diaphragm/physiopathology , Diaphragm/blood supply , Disease Models, Animal , Vasodilator Agents/pharmacology , Endothelium, Vascular/physiopathology , Vasoconstriction , Monocrotaline/toxicity , Rats
4.
Cells ; 12(20)2023 10 20.
Article in English | MEDLINE | ID: mdl-37887338

ABSTRACT

Adiponectin (adipoq), the most abundant hormone in circulation, has many beneficial effects on the cardiovascular system, in part by preserving the contractile phenotype of vascular smooth muscle cells (VSMCs). However, the lack of adiponectin or its receptor and treatment with recombinant adiponectin have shown contradictory effects on plaque in mice. RNA sequence of Adipoq+/+ and adipoq-/- VSMCs from male aortas identified a critical role for adiponectin in AKT signaling, the extracellular matrix (ECM), and TGF-ß signaling. Upregulation of AKT activity mediated proliferation and migration of adipoq-/- cells. Activation of AMPK with metformin or AdipoRon reduced AKT-dependent proliferation and migration of adipoq-/- cells but did not improve the expression of contractile genes. Adiponectin deficiency impaired oxidative phosphorylation (OXPHOS), increased expression of glycolytic enzymes, and elevated mitochondrial reactive oxygen species (ROS) (superoxide, and hydrogen peroxide). Anti-atherogenic mechanisms targeted the ECM in adipoq-/- cells, downregulating MMP2 and 9 and upregulating decorin (DCN) and elastin (ELN). In vivo, the main sex differences in protein expression in aortas involved a more robust upregulation of MMP3 in females than males. Females also showed a reduction in DCN, which was not affected in males. Our study uncovered the AKT/MAPK/TGF-ß network as a central regulator of VSMC phenotype.


Subject(s)
Adiponectin , Proto-Oncogene Proteins c-akt , Male , Mice , Female , Animals , Adiponectin/genetics , Adiponectin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Muscle, Smooth, Vascular/metabolism , Phenotype , Transforming Growth Factor beta/metabolism
5.
J Appl Physiol (1985) ; 135(4): 786-794, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37589056

ABSTRACT

Acute aerobic exercise stress is associated with decreased endothelial function that may increase the likelihood of an acute cardiovascular event. Passive stretch (PS) elicits improvements in vascular function, but whether PS can be performed before exercise to prevent declines in vascular function remains unknown. This strategy could be directly applicable in populations that may not be able to perform dynamic exercise. We hypothesized that preexercise PS would provide better vascular resilience after treadmill exercise. Sixteen healthy college-aged males and females participated in a single laboratory visit and underwent testing to assess micro- and macrovascular function. Participants were randomized into either PS group or sham control group. Intermittent calf PS was performed by having the foot in a splinting device for a 5-min stretch and 5-min relaxation, repeated four times. Then, a staged V̇o2 peak test was performed and 65% V̇o2 peak calculated for subjects to run at for 30 min. Near-infrared spectroscopy-derived microvascular responsiveness was preserved with the PS group [(pre: 0.53 ± 0.009%/s) (post: 0.56 ± 0.012%/s; P = 0.55)]. However, there was a significant reduction in the sham control group [(pre: 0.67 ± 0.010%/s) (post: 0.51 ± 0.007%/s; P = 0.05)] after treadmill exercise. Flow-mediated vasodilation (FMD) of the popliteal artery showed similar responses. In the PS group, FMD [(pre: 7.23 ± 0.74%) (post: 5.86 ± 1.01%; P = 0.27)] did not significantly decline after exercise. In the sham control group, FMD [(pre: 8.69 ± 0.72%) (post: 5.24 ± 1.24%; P < 0.001)] was significantly reduced after treadmill exercise. Vascular function may be more resilient if intermittent PS is performed before moderate-intensity exercise and, importantly, can be performed by most individuals.NEW & NOTEWORTHY We demonstrate for the first time that popliteal artery and gastrocnemius microvascular responsiveness after acute aerobic exercise are reduced. The decline in vascular function was mitigated in those who performed intermittent passive stretching before the exercise bouts. Collectively, these findings suggest that intermittent passive stretching is a novel method to increase vascular resiliency before aerobic activity.


Subject(s)
Muscle Stretching Exercises , Male , Female , Humans , Young Adult , Vasodilation/physiology , Endothelium, Vascular/physiology , Exercise Test , Leg , Brachial Artery/physiology
6.
Cells ; 13(1)2023 12 19.
Article in English | MEDLINE | ID: mdl-38201205

ABSTRACT

The hormone adiponectin has many beneficial effects in atherosclerosis, as gene deficiency in adiponectin or its receptor has shown detrimental effects on plaque burden in mice. Our objective was to understand the potential roles adiponectin deficiency has on aortic plaque content, inflammation, and markers of cardiovascular disease according to sex and age. To study the influence of adiponectin status on sex and atherosclerosis, we used young male and female adipoq-/-apoe-/-, adipoq+/-apoe-/-, and apoe-/- mice, which were given a high-fat diet (HFD). Even a 50% reduction in the expression of adiponectin led to a plaque reduction in males and an increase in females compared with apoe-/- controls. Changes in plaque were not attributed to changes in cholesterol or cardiovascular disease markers but correlated with inflammatory markers. Plaque reduction in males was associated with reduced monocyte chemoattractant protein 1 (MCP1) and increased colony stimulating factor 3 (CSF3), while the increase in plaque in females correlated with the opposite effect in these markers. In old mice, both adiponectin-deficient genotypes and sexes accumulated more plaque than their respective apoe-/- controls. The increase in plaque with adiponectin deficiency according to age was not explained by a worsening lipid profile but correlated with increased levels of C-C motif chemokine ligand 5 (CCL5). Overall, our study uncovered genotype-specific effects that differed by sex and age of adiponectin deficiency in atherosclerosis.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Metabolism, Inborn Errors , Animals , Female , Male , Mice , Adiponectin/genetics , Apolipoproteins E/genetics , Atherosclerosis/genetics
7.
Front Physiol ; 13: 939459, 2022.
Article in English | MEDLINE | ID: mdl-35860661

ABSTRACT

Microcirculation in skeletal muscle is disturbed with advancing aging, causing limited capillary blood flow and exercise incapacity. Muscle stretch has been widely performed in physical therapy, sports medicine, and health promotion. However, the effect of stretch on microvascular reactivity and muscle blood flow remains unknown. This review focuses on stretch-induced microvascular adaptations based on evidence from cultured cells, small animals, and human studies. Vascular endothelium senses and responds to mechanical stimuli including stretch. This endothelial mechanotransduction potentially plays a vital role in the stretch-induced microvascular adaptation alongside hypoxia. Aging impairs microvascular endothelial function, but muscle stretch has the potential to restore it. Muscle stretch may be an alternative to improve vascular function and enhance exercising blood flow, especially for those who have difficulties in participating in exercise due to medical, functional, or psychological reasons.

8.
Microcirculation ; 28(8): e12727, 2021 11.
Article in English | MEDLINE | ID: mdl-34467606

ABSTRACT

INTRODUCTION: Prolonged mechanical ventilation (MV; ≥6 h) results in large, time-dependent reductions in diaphragmatic blood flow and shear stress. We tested the hypothesis that MV would impair the structural and material properties (ie, increased stress/stretch relation and/or circumferential stretch) of first-order arterioles (1A) from the medial costal diaphragm. METHODS: Shear stress was estimated from isolated arterioles and prior blood flow data from the diaphragm during spontaneous breathing (SB) and prolonged MV (6 h MV). Thereafter, female Sprague-Dawley rats (~5 months) were randomly divided into two groups, SB (n = 6) and 6 h MV (n = 6). Following SB and 6 h MV, 1A medial costal diaphragm arterioles were isolated, cannulated, and subjected to stepwise (0-140 cmH2 O) increases in intraluminal pressure in calcium-free Ringer's solution. Inner diameter and wall thickness were measured at each pressure step and used to calculate wall:lumen ratio, Cauchy-stress, and circumferential stretch. RESULTS: Compared to SB, there was a ~90% reduction in arteriolar shear stress with prolonged MV (9 ± 2 vs 78 ± 20 dynes/cm2 ; p ≤ .05). In the unloaded condition (0 cmH2 O), the arteriolar intraluminal diameter was reduced (37 ± 8 vs 79 ± 13 µm) and wall:lumen ratio was increased (120 ± 18 vs 46 ± 10%) compared to SB (p ≤ .05). There were no differences in the passive diameter responses or the circumferential stress/stretch relationship between groups (p > .05), but at each pressure step, circumferential stretch was increased with 6 h MV vs SB (p ≤ .05). CONCLUSION: During prolonged MV, medial costal diaphragm arteriolar shear stress is severely diminished. Despite no change in the material behavior (stress/stretch), prolonged MV resulted in altered structural and mechanical properties (ie, elevated circumferential stretch) of medial costal diaphragm arterioles. This provides important novel mechanistic insights into the impaired diaphragm blood flow capacity and vascular dysfunction following prolonged MV.


Subject(s)
Diaphragm , Respiration, Artificial , Animals , Arterioles , Diaphragm/physiology , Female , Muscle Contraction/physiology , Rats , Rats, Sprague-Dawley , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Ventilators, Mechanical
9.
Am J Physiol Heart Circ Physiol ; 320(6): H2351-H2370, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33961506

ABSTRACT

Until recently, epicardial coronary stenosis has been considered the primary outcome of coronary heart disease, and clinical interventions have been dedicated primarily to the identification and removal of flow-limiting stenoses. However, a growing body of literature indicates that both epicardial stenosis and microvascular dysfunction contribute to damaging myocardial ischemia. In this review, we discuss the coexistence of macro- and microvascular disease, and how the structure and function of the distal microcirculation is impacted by the hemodynamic consequences of an epicardial, flow-limiting stenosis. Mechanisms of endothelial dysfunction as well as alterations of smooth muscle function in the coronary microcirculation distal to stenosis are discussed. Risk factors including diabetes, metabolic syndrome, and aging exacerbate microvascular dysfunction in the myocardium distal to a stenosis, and our current understanding of the role of these factors in limiting collateralization and angiogenesis of the ischemic myocardium is presented. Importantly, exercise training has been shown to promote collateral growth and improve microvascular function distal to stenosis; thus, the current literature reporting the mechanisms that underlie the beneficial effects of exercise training in the microcirculation distal to epicardial stenosis is reviewed. We also discuss recent studies of therapeutic interventions designed to improve microvascular function and stimulate angiogenesis in clinically relevant animal models of epicardial stenosis and microvascular disease. Finally, microvascular adaptation to removal of epicardial stenosis is considered.


Subject(s)
Coronary Circulation/physiology , Coronary Stenosis/physiopathology , Endothelium/physiopathology , Microcirculation/physiology , Microvessels/physiopathology , Muscle, Smooth, Vascular/physiopathology , Myocardial Ischemia/physiopathology , Adaptation, Physiological , Aging/physiology , Animals , Collateral Circulation , Diabetes Mellitus , Diabetic Angiopathies/physiopathology , Hemodynamics , Humans , Metabolic Syndrome/physiopathology , Pericardium
10.
Am J Physiol Heart Circ Physiol ; 321(1): H1-H14, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33989084

ABSTRACT

We tested the hypothesis that adiponectin deficiency attenuates cardiac and coronary microvascular function and prevents exercise training-induced adaptations of the myocardium and the coronary microvasculature in adult mice. Adult wild-type (WT) or adiponectin knockout (adiponectin KO) mice underwent treadmill exercise training or remained sedentary for 8-10 wk. Systolic and diastolic functions were assessed before and after exercise training or cage confinement. Vasoreactivity of coronary resistance arteries was assessed at the end of exercise training or cage confinement. Before exercise training, ejection fraction and fractional shortening were similar in adiponectin KO and WT mice, but isovolumic contraction time was significantly lengthened in adiponectin KO mice. Exercise training increased ejection fraction (12%) and fractional shortening (20%) with no change in isovolumic contraction time in WT mice. In adiponectin KO mice, both ejection fraction (-9%) and fractional shortening (-12%) were reduced after exercise training and these decreases were coupled to a further increase in isovolumic contraction time (20%). In sedentary mice, endothelium-dependent dilation to flow was higher in arterioles from adiponectin KO mice as compared with WT mice. Exercise training enhanced dilation to flow in WT mice but decreased flow-induced dilation in adiponectin KO mice. These data suggest that compensatory mechanisms contribute to the maintenance of cardiac and coronary microvascular function in sedentary mice lacking adiponectin; however, in the absence of adiponectin, cardiac and coronary microvascular adaptations to exercise training are compromised.NEW & NOTEWORTHY We report that compensatory mechanisms contribute to the maintenance of cardiac and coronary microvascular function in sedentary mice in which adiponectin has been deleted; however, when mice lacking adiponectin are subjected to the physiological stress of exercise training, beneficial coronary microvascular and cardiac adaptations are compromised or absent.


Subject(s)
Adiponectin/genetics , Heart/physiology , Physical Conditioning, Animal/physiology , Vasodilation/physiology , Adiponectin/metabolism , Animals , Endothelium, Vascular/physiopathology , Male , Mice , Mice, Knockout , Microvessels/physiology , Myocardium/metabolism
11.
Cardiovasc Revasc Med ; 20(8): 642-648, 2019 08.
Article in English | MEDLINE | ID: mdl-31171470

ABSTRACT

BACKGROUND: Patients with peripheral arterial disease (PAD) often have walking impairment due to insufficient oxygen supply to skeletal muscle. In aged rats, we have shown that daily stretching of calf muscles improves endothelium-dependent dilation of arterioles from the soleus muscle and increases capillarity and muscle blood flow during exercise. Therefore, we hypothesized that daily muscle stretching of calf muscles would improve endothelium-dependent vasodilation of the popliteal artery and walking function in PAD patients. METHODS: We performed a randomized, non-blinded, crossover study whereby 13 patients with stable symptomatic PAD were randomized to undergo either 4 weeks of passive calf muscle stretching (ankle dorsiflexion applied 30 min/d, 5 days/wk) followed by 4 weeks of no muscle stretching and vice versa. Endothelium-dependent flow-mediated dilation (FMD) and endothelium-independent nitroglycerin-induced dilation of the popliteal artery and 6 minute walk test (6MWT) were evaluated at baseline and after each 4 week interval. RESULTS: After 4 weeks of muscle stretching, FMD and 6MWT improved significantly in the muscle stretching group vs. the control (FMD: 5.1 ±â€¯0.5% vs. 3.7 ±â€¯0.3%, P = 0.005; 6MWT continuous walking distance: 304 ±â€¯43 m vs. 182 ±â€¯34 m; P = 0.0006). No difference in nitroglycerin-induced dilation was found between groups (10.9 ±â€¯1.2 vs. 9.9 ±â€¯0.4%, P = 0.48). Post-stretching, 6MWT total walking distance was positively correlated with normalized FMD (R = 0.645, P = 0.02). CONCLUSIONS: Passive calf muscle stretching enhanced vascular endothelial function and improved walking function in elderly patients with stable symptomatic PAD. These findings merit further investigation in a prospective randomized trial.


Subject(s)
Endothelium, Vascular/physiopathology , Exercise Tolerance , Intermittent Claudication/therapy , Muscle Stretching Exercises , Muscle, Skeletal/blood supply , Peripheral Arterial Disease/therapy , Popliteal Artery/physiopathology , Vasodilation , Walk Test , Aged , Aged, 80 and over , Cross-Over Studies , Female , Florida , Humans , Intermittent Claudication/diagnostic imaging , Intermittent Claudication/physiopathology , Male , Middle Aged , Peripheral Arterial Disease/diagnostic imaging , Peripheral Arterial Disease/physiopathology , Popliteal Artery/diagnostic imaging , Predictive Value of Tests , Prospective Studies , Recovery of Function , Regional Blood Flow , Time Factors , Treatment Outcome
12.
Am J Cancer Res ; 9(4): 650-667, 2019.
Article in English | MEDLINE | ID: mdl-31105994

ABSTRACT

Physical activity is associated with diminished risk of several cancers, and preclinical studies suggest exercise training may alter tumor cell growth in certain tissue(s) (e.g., adipose). From moderate-intensity exercise-trained rats versus sedentary controls, we hypothesized 1) there will be a decreased prostate cancer cell viability and migration in vitro and, within the prostate, a reduced 5α-reductase 2 (5αR2) and increased caspase-3 expression, and 2) that exercise training in tumor-bearing (TB) animals will demonstrate a reduced tumor cell viability in prostate-conditioned media. Serum and prostate were harvested from sedentary or exercise-trained (treadmill running, 10-11 weeks) immune-competent (Copenhagen; n = 20) and -deficient (Nude; n = 18) rats. AT-1 and PC-3 prostate cancer cells were grown in one or more of the following: serum-supplemented media (SSM), SSM from TB rats (SSM-TB), prostate-conditioned media (PCM) or PCM from TB rats (PCM-TB) for 24-96 h under normoxic (18.6% O2) or hypoxic (5% O2) conditions. Under normoxic condition, there was a decreased AT-1 cell viability in SSM and PCM from the exercise-trained (ET) immune-competent rats, but no difference in PC-3 cell viability in SSM and PCM from ET Nude rats versus the sedentary (SED) group, or in SSM-TB from ET-TB Nude rats versus the SED-TB group. However, there was a decreased PC-3 cell viability in the PCM-TB of the ET-TB group versus SED-TB group. PC-3 cell viability in all conditioned media types was not altered between groups with hypoxia. In the prostate, exercise training did not alter 5αR2 expression levels, but increased caspase-3 expression levels. In conclusion, prior exercise status reduced prostate cancer cell viability in the serum and prostate of trained rats but did not modify several other key prostate tumor cell growth characteristics (e.g., migration, cell cycle except in S phase of PC-3 cells in PCM-TB). Importantly, once the tumor was established, exercise training reduced tumor cell viability in the surrounding prostate, which may help explain the reduced severity of the disease in patients that exercise.

13.
J Physiol ; 596(10): 1903-1917, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29623692

ABSTRACT

KEY POINTS: In aged rats, daily muscle stretching increases blood flow to skeletal muscle during exercise. Daily muscle stretching enhanced endothelium-dependent vasodilatation of skeletal muscle resistance arterioles of aged rats. Angiogenic markers and capillarity increased in response to daily stretching in muscles of aged rats. Muscle stretching performed with a splint could provide a feasible means of improving muscle blood flow and function in elderly patients who cannot perform regular aerobic exercise. ABSTRACT: Mechanical stretch stimuli alter the morphology and function of cultured endothelial cells; however, little is known about the effects of daily muscle stretching on adaptations of endothelial function and muscle blood flow. The present study aimed to determine the effects of daily muscle stretching on endothelium-dependent vasodilatation and muscle blood flow in aged rats. The lower hindlimb muscles of aged Fischer rats were passively stretched by placing an ankle dorsiflexion splint for 30 min day-1 , 5 days week-1 , for 4 weeks. Blood flow to the stretched limb and the non-stretched contralateral limb was determined at rest and during treadmill exercise. Endothelium-dependent/independent vasodilatation was evaluated in soleus muscle arterioles. Levels of hypoxia-induced factor-1α, vascular endothelial growth factor A and neuronal nitric oxide synthase were determined in soleus muscle fibres. Levels of endothelial nitric oxide synthase and superoxide dismutase were determined in soleus muscle arterioles, and microvascular volume and capillarity were evaluated by microcomputed tomography and lectin staining, respectively. During exercise, blood flow to plantar flexor muscles was significantly higher in the stretched limb. Endothelium-dependent vasodilatation was enhanced in arterioles from the soleus muscle from the stretched limb. Microvascular volume, number of capillaries per muscle fibre, and levels of hypoxia-induced factor-1α, vascular endothelial growth factor and endothelial nitric oxide synthase were significantly higher in the stretched limb. These results indicate that daily passive stretching of muscle enhances endothelium-dependent vasodilatation and induces angiogenesis. These microvascular adaptations may contribute to increased muscle blood flow during exercise in muscles that have undergone daily passive stretch.


Subject(s)
Aging , Blood Volume , Endothelium, Vascular/physiology , Hemodynamics , Muscle, Skeletal/blood supply , Muscle, Skeletal/physiology , Physical Conditioning, Animal , Animals , Capillary Action , Endothelium, Vascular/cytology , Male , Muscle Stretching Exercises , Rats , Rats, Inbred F344
14.
Behav Brain Res ; 340: 14-22, 2018 03 15.
Article in English | MEDLINE | ID: mdl-28419850

ABSTRACT

BACKGROUND & AIM: Overpressure blast-wave induced brain injury (OBI) and its long-term neurological outcome pose significant concerns for military personnel. Our aim is to investigate the mechanism of injury due to OBI. METHODS: Rats were divided into 3 groups: (1) Control, (2) OBI (exposed 30psi peak pressure, 2-2.5ms), (3) Repeated OBI (r-OBI) (three exposures over one-week period). Lung and brain (cortex and cerebellum) tissues were collected at 24h post injury. RESULTS: The neurological examination score was worse in OBI and r-OBI (4.2±0.6 and 3.7±0.5, respectively) versus controls (0.7±0.2). A significant positive correlation between lung and brain edema was found. Malondialdehyde (index for lipid peroxidation), significantly increased in OBI and r-OBI groups in cortex (p<0.05) and cerebellum (p<0.01-0.001). The glutathione (endogenous antioxidant) level decreased in cortex (p<0.01) and cerebellum (p<0.05) of r-OBI group when compared with the controls. Myeloperoxidase activity indicating neutrophil infiltration, was significantly (p<0.01-0.05) elevated in r-OBI. Additionally, tissue thromboplastin activity, a coagulation marker, was elevated, indicating a tendency to bleed. NGF and NF-κB proteins along with Iba-1 and GFAP immunoreactivity significantly augmented in the frontal cortex demonstrating microglial activation. Serum biomarkers of injury, NSE, TNF-alpha and leptin, were also elevated. CONCLUSION: OBI triggers both inflammation and oxidative injury in the brain. This data in conjunction with our previous observations suggests that OBI triggers a cascade of events beginning with impaired cerebral vascular function leading to ischemia and chronic neurological consequences.


Subject(s)
Blast Injuries/metabolism , Cerebellum/injuries , Frontal Lobe/injuries , Inflammation/metabolism , Oxidative Stress/physiology , Animals , Blast Injuries/complications , Blast Injuries/pathology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain Edema/etiology , Brain Edema/metabolism , Brain Edema/pathology , Cerebellum/metabolism , Cerebellum/pathology , Disease Models, Animal , Frontal Lobe/metabolism , Frontal Lobe/pathology , Gliosis/etiology , Gliosis/metabolism , Gliosis/pathology , Glutathione/metabolism , Inflammation/etiology , Inflammation/pathology , Leptin/blood , Lung/metabolism , Lung/pathology , Male , Malondialdehyde/metabolism , Microglia/metabolism , Microglia/pathology , Peroxidase/metabolism , Rats, Sprague-Dawley , Thromboplastin/metabolism
15.
J Appl Physiol (1985) ; 124(1): 140-149, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29025901

ABSTRACT

Coronary microvascular function and blood flow responses during acute exercise are impaired in the aged heart but can be restored by exercise training. Coronary microvascular resistance is directly dependent on vascular smooth muscle function in coronary resistance arterioles; therefore, we hypothesized that age impairs contractile function and alters the phenotype of vascular smooth muscle in coronary arterioles. We further hypothesized that exercise training restores contractile function and reverses age-induced phenotypic alterations of arteriolar smooth muscle. Young and old Fischer 344 rats underwent 10 wk of treadmill exercise training or remained sedentary. At the end of training or cage confinement, contractile responses, vascular smooth muscle proliferation, and expression of contractile proteins were assessed in isolated coronary arterioles. Both receptor- and non-receptor-mediated contractile function were impaired in coronary arterioles from aged rats. Vascular smooth muscle shifted from a differentiated, contractile phenotype to a secretory phenotype with associated proliferation of smooth muscle in the arteriolar wall. Expression of smooth muscle myosin heavy chain 1 (SM1) was decreased in arterioles from aged rats, whereas expression of phospho-histone H3 and of the synthetic protein ribosomal protein S6 (rpS6) were increased. Exercise training improved contractile responses, reduced smooth muscle proliferation and expression of rpS6, and increased expression of SM1 in arterioles from old rats. Thus age-induced contractile dysfunction of coronary arterioles and emergence of a secretory smooth muscle phenotype may contribute to impaired coronary blood flow responses, but arteriolar contractile responsiveness and a younger smooth muscle phenotype can be restored with late-life exercise training. NEW & NOTEWORTHY Aging impairs contractile function of coronary arterioles and induces a shift of the vascular smooth muscle toward a proliferative, noncontractile phenotype. Late-life exercise training reverses contractile dysfunction of coronary arterioles and restores a young phenotype to the vascular smooth muscle.


Subject(s)
Aging/physiology , Coronary Vessels/physiology , Microvessels/physiology , Muscle, Smooth, Vascular/physiology , Physical Conditioning, Animal/physiology , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid , Animals , Male , Muscle, Smooth, Vascular/cytology , Rats, Inbred F344 , Vasoconstriction
16.
J Physiol ; 595(12): 3703-3719, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28295341

ABSTRACT

KEY POINTS: In a rat model of ageing that is free of atherosclerosis or hypertension, E/A, a diagnostic measure of diastolic filling, decreases, and isovolumic relaxation time increases, indicating that both active and passive ventricular relaxation are impaired with advancing age. Resting coronary blood flow and coronary functional hyperaemia are reduced with age, and endothelium-dependent vasodilatation declines with age in coronary resistance arterioles. Exercise training reverses age-induced declines in diastolic and coronary microvascular function. Thus, microvascular dysfunction and inadequate coronary perfusion are likely mechanisms of diastolic dysfunction in aged rats. Exercise training, initiated at an advanced age, reverses age-related diastolic and microvascular dysfunction; these data suggest that late-life exercise training can be implemented to improve coronary perfusion and diastolic function in the elderly. ABSTRACT: The risk for diastolic dysfunction increases with advancing age. Regular exercise training ameliorates age-related diastolic dysfunction; however, the underlying mechanisms have not been identified. We investigated whether (1) microvascular dysfunction contributes to the development of age-related diastolic dysfunction, and (2) initiation of late-life exercise training reverses age-related diastolic and microvascular dysfunction. Young and old rats underwent 10 weeks of exercise training or remained as sedentary, cage-controls. Isovolumic relaxation time (IVRT), early diastolic filling (E/A), myocardial performance index (MPI) and aortic stiffness (pulse wave velocity; PWV) were evaluated before and after exercise training or cage confinement. Coronary blood flow and vasodilatory responses of coronary arterioles were evaluated in all groups at the end of training. In aged sedentary rats, compared to young sedentary rats, a 42% increase in IVRT, a 64% decrease in E/A, and increased aortic stiffness (PWV: 6.36 ± 0.47 vs.4.89 ± 0.41, OSED vs. YSED, P < 0.05) was accompanied by impaired coronary blood flow at rest and during exercise. Endothelium-dependent vasodilatation was impaired in coronary arterioles from aged rats (maximal relaxation to bradykinin: 56.4 ± 5.1% vs. 75.3 ± 5.2%, OSED vs. YSED, P < 0.05). After exercise training, IVRT, a measure of active ventricular relaxation, did not differ between old and young rats. In old rats, exercise training reversed the reduction in E/A, reduced aortic stiffness, and eliminated impairment of coronary blood flow responses and endothelium-dependent vasodilatation. Thus, age-related diastolic and microvascular dysfunction are reversed by late-life exercise training. The restorative effect of exercise training on coronary microvascular function may result from improved endothelial function.


Subject(s)
Coronary Vessels/physiology , Diastole/physiology , Microvessels/physiology , Physical Conditioning, Animal/physiology , Ventricular Dysfunction/physiopathology , Animals , Endothelium, Vascular/physiology , Male , Pulse Wave Analysis/methods , Rats , Rats, Inbred F344 , Regional Blood Flow/physiology , Vascular Stiffness/physiology , Vasodilation/physiology
18.
J Physiol ; 594(8): 2285-95, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26575597

ABSTRACT

The distribution of blood flow to skeletal muscle during exercise is altered with advancing age. Changes in arteriolar function that are muscle specific underlie age-induced changes in blood flow distribution. With advancing age, functional adaptations that occur in resistance arterioles from oxidative muscles differ from those that occur in glycolytic muscles. Age-related adaptations of morphology, as well as changes in both endothelial and vascular smooth muscle signalling, differ in muscle of diverse fibre type. Age-induced endothelial dysfunction has been reported in most skeletal muscle arterioles; however, unique alterations in signalling contribute to the dysfunction in arterioles from oxidative muscles as compared with those from glycolytic muscles. In resistance arterioles from oxidative muscle, loss of nitric oxide signalling contributes significantly to endothelial dysfunction, whereas in resistance arterioles from glycolytic muscle, alterations in both nitric oxide and prostanoid signalling underlie endothelial dysfunction. Similarly, adaptations of the vascular smooth muscle that occur with advancing age are heterogeneous between arterioles from oxidative and glycolytic muscles. In both oxidative and glycolytic muscle, late-life exercise training reverses age-related microvascular dysfunction, and exercise training appears to be particularly effective in reversing endothelial dysfunction. Patterns of microvascular ageing that develop among muscles of diverse fibre type and function may be attributable to changing patterns of physical activity with ageing. Importantly, aerobic exercise training, initiated even at an advanced age, restores muscle blood flow distribution patterns and vascular function in old animals to those seen in their young counterparts.


Subject(s)
Aging/physiology , Microcirculation , Microvessels/physiology , Muscle, Skeletal/blood supply , Animals , Exercise , Hemodynamics , Humans , Microvessels/growth & development , Microvessels/metabolism , Muscle, Skeletal/growth & development , Muscle, Skeletal/physiology
19.
J Cereb Blood Flow Metab ; 35(12): 1950-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26104291

ABSTRACT

Overpressure blast-wave induced brain injury (OBI) leads to progressive pathophysiologic changes resulting in a reduction in brain blood flow, blood brain barrier breakdown, edema, and cerebral ischemia. The aim of this study was to evaluate cerebral vascular function after single and repeated OBI. Male Sprague-Dawley rats were divided into three groups: Control (Naive), single OBI (30 psi peak pressure, 1 to 2 msec duration), and repeated (days 1, 4, and 7) OBI (r-OBI). Rats were killed 24 hours after injury and the basilar artery was isolated, cannulated, and pressurized (90 cm H2O). Vascular responses to potassium chloride (KCl) (30 to 100 mmol/L), endothelin-1 (10(-12) to 10(-7) mol/L), acetylcholine (ACh) (10(-10) to 10(-4) mol/L) and diethylamine-NONO-ate (DEA-NONO-ate) (10(-10) to 10(-4) mol/L) were evaluated. The OBI resulted in an increase in the contractile responses to endothelin and a decrease in the relaxant responses to ACh in both single and r-OBI groups. However, impaired DEA-NONO-ate-induced vasodilation and increased wall thickness to lumen ratio were observed only in the r-OBI group. The endothelin-1 type A (ET(A)) receptor and endothelial nitric oxide synthase (eNOS) immunoreactivity were significantly enhanced by OBI. These findings indicate that both single and r-OBI impairs cerebral vascular endothelium-dependent dilation, potentially a consequence of endothelial dysfunction and/or vascular remodelling in basilar arteries after OBI.


Subject(s)
Basilar Artery/pathology , Blast Injuries/pathology , Brain Injuries/pathology , Animals , Capillaries/pathology , Male , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/drug effects , Nitric Oxide Synthase Type III/drug effects , Nitric Oxide Synthase Type III/metabolism , Pressure , Rats , Rats, Sprague-Dawley , Receptor, Endothelin A/drug effects , Receptor, Endothelin A/metabolism , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology
20.
J Appl Physiol (1985) ; 118(7): 830-8, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25593287

ABSTRACT

Conditions during spaceflight, such as the loss of the head-to-foot gravity vector, are thought to potentially alter cerebral blood flow and vascular resistance. The purpose of the present study was to determine the effects of long-term spaceflight on the functional, mechanical, and structural properties of cerebral arteries. Male C57BL/6N mice were flown 30 days in a Bion-M1 biosatellite. Basilar arteries isolated from spaceflight (SF) (n = 6), habitat control (HC) (n = 6), and vivarium control (VC) (n = 16) mice were used for in vitro functional and mechanical testing and histological structural analysis. The results demonstrate that vasoconstriction elicited through a voltage-gated Ca(2+) mechanism (30-80 mM KCl) and thromboxane A2 receptors (10(-8) - 3 × 10(-5) M U46619) are lower in cerebral arteries from SF mice. Inhibition of Rho-kinase activity (1 µM Y27632) abolished group differences in U46619-evoked contractions. Endothelium-dependent vasodilation elicited by acetylcholine (10 µM, 2 µM U46619 preconstriction) was virtually absent in cerebral arteries from SF mice. The pressure-diameter relation was lower in arteries from SF mice relative to that in HC mice, which was not related to differences in the extracellular matrix protein elastin or collagen content or the elastin/collagen ratio in the basilar arteries. Diameter, medial wall thickness, and medial cross-sectional area of unpressurized basilar arteries were not different among groups. These results suggest that the microgravity-induced attenuation of both vasoconstrictor and vasodilator properties may limit the range of vascular control of cerebral perfusion or impair the distribution of brain blood flow during periods of stress.


Subject(s)
Adaptation, Physiological/physiology , Cerebral Arteries/physiology , Cerebrovascular Circulation/physiology , Space Flight , Vasomotor System/physiology , Weightlessness Simulation , Animals , Blood Flow Velocity/physiology , Calcium/metabolism , Cerebral Arteries/anatomy & histology , Elastic Modulus/physiology , Endothelium, Vascular/physiology , Male , Mice , Mice, Inbred C57BL , Potassium Channels, Voltage-Gated/physiology , Receptors, Thromboxane A2, Prostaglandin H2/metabolism , Spacecraft , Vascular Stiffness/physiology , Vasoconstriction/physiology , Vasodilation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...