Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 56(4): 1942-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22271861

ABSTRACT

The emergence of drug resistance threatens to limit the use of current anti-HIV-1 drugs and highlights the need to expand the number of treatment options available for HIV-1-infected individuals. Our previous studies demonstrated that two clinically approved drugs, decitabine and gemcitabine, potently inhibited HIV-1 replication in cell culture through a mechanism that is distinct from the mechanisms for the drugs currently used to treat HIV-1 infection. We further demonstrated that gemcitabine inhibited replication of a related retrovirus, murine leukemia virus (MuLV), in vivo using the MuLV-based LP-BM5/murine AIDS (MAIDS) mouse model at doses that were not toxic. Since decitabine and gemcitabine inhibited MuLV and HIV-1 replication with similar potency in cell culture, the current study examined the efficacy and toxicity of the drug combination using the MAIDS model. The data demonstrate that the drug combination inhibited disease progression, as detected by histopathology, viral loads, and spleen weights, at doses lower than those that would be required if the drugs were used individually. The combination of decitabine and gemcitabine exerted antiviral activity at doses that were not toxic. These findings indicate that the combination of decitabine and gemcitabine shows potent antiretroviral activity at nontoxic doses and should be further investigated for clinical relevance.


Subject(s)
Anti-HIV Agents/therapeutic use , Azacitidine/analogs & derivatives , Deoxycytidine/analogs & derivatives , HIV-1/drug effects , Murine Acquired Immunodeficiency Syndrome/drug therapy , Animals , Anti-HIV Agents/adverse effects , Azacitidine/therapeutic use , Body Weight/drug effects , Cells, Cultured , Chemical and Drug Induced Liver Injury/pathology , Decitabine , Deoxycytidine/adverse effects , Deoxycytidine/therapeutic use , Drug Combinations , Drug Synergism , Female , Flow Cytometry , Humans , Liver/pathology , Lymph Nodes/pathology , Lymph Nodes/virology , Mice , Mice, Inbred C57BL , Murine Acquired Immunodeficiency Syndrome/pathology , Murine Acquired Immunodeficiency Syndrome/virology , Proviruses/drug effects , Spleen/pathology , Spleen/virology , T-Lymphocytes/drug effects , Transfection , Gemcitabine
2.
PLoS One ; 6(1): e15840, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21264291

ABSTRACT

Replication of retroviral and host genomes requires ribonucleotide reductase to convert rNTPs to dNTPs, which are then used as substrates for DNA synthesis. Inhibition of ribonucleotide reductase by hydroxyurea (HU) has been previously used to treat cancers as well as HIV. However, the use of HU as an antiretroviral is limited by its associated toxicities such as myelosuppression and hepatotoxicity. In this study, we examined the ribonucleotide reductase inhibitor, gemcitabine, both in cell culture and in C57Bl/6 mice infected with LP-BM5 murine leukemia virus (LP-BM5 MuLV, a murine AIDS model). Gemcitabine decreased infectivity of MuLV in cell culture with an EC50 in the low nanomolar range with no detectable cytotoxicity. Similarly, gemcitabine significantly decreased disease progression in mice infected with LP-BM5. Specifically, gemcitabine treatment decreased spleen size, plasma IgM, and provirus levels compared to LP-BM5 MuLV infected, untreated mice. Gemcitabine efficacy was observed at doses as low as 1 mg/kg/day in the absence of toxicity. Higher doses of gemcitabine (3 mg/kg/day and higher) were associated with toxicity as determined by a loss in body mass. In summary, our findings demonstrate that gemcitabine has antiretroviral activity ex vivo and in vivo in the LP-BM5 MuLV model. These observations together with a recent ex vivo study with HIV-1, suggest that gemcitabine has broad antiretroviral activity and could be particularly useful in vivo when used in combination drug therapy.


Subject(s)
Anti-Retroviral Agents/pharmacology , Deoxycytidine/analogs & derivatives , Leukemia Virus, Murine/drug effects , Murine Acquired Immunodeficiency Syndrome/drug therapy , Animals , Cells, Cultured , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Disease Progression , Immunoglobulin M/blood , Mice , Mice, Inbred C57BL , Ribonucleotide Reductases/antagonists & inhibitors , Spleen/pathology , Viral Load/drug effects , Gemcitabine
3.
Am J Physiol Regul Integr Comp Physiol ; 289(2): R359-R366, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15879054

ABSTRACT

Orexin A is produced in caudal lateral, posterior, perifornical, and dorsomedial hypothalamic areas. Orexin A in the rostro-dorsal lateral hypothalamic area (rLHa) stimulates feeding and activates several feeding-regulatory brain areas. We hypothesized that aging diminishes feeding and c-Fos-immunoreactivity (c-Fos-ir; marker of neuronal activation) response to orexin A. Young (3 mo), middle-aged (12 mo), and old (24 mo) male Fischer 344 rLHa-cannulated rats were injected with orexin A (0.5, 1, and 2 nmol). Food intake was measured at 1, 2, and 4 h. c-Fos-ir in hypothalamic, limbic, and hindbrain regions was measured in two additional sets of rLHa-orexin A injected rats. In a separate study, orexin A effects on feeding and c-Fos-ir were measured in 6-mo-old rats. Orexin A significantly elevated feeding in rats aged 3, 6, and 12 mo in the 0-1 and 1-2- h time intervals, whereas in old rats this was significant in the 1-2 h time interval only. At 1 h, 6-8 (of 14) brain areas showed elevated c-Fos-ir in response to orexin A in 3- and 6-mo-old rats, but 24-mo-old rats exhibited attenuated or absent c-Fos-ir response in all brain regions except the hypothalamic paraventricular nucleus (PVN) and rostral nucleus of the solitary tract (rNTS). Orexin A did not elevate c-Fos-ir in 3-mo-old rats at 2 h after injection, whereas the PVN and mediodorsal thalamic nucleus (MD) showed elevated c-Fos-ir at 2 h in 24-mo-old rats. These data suggest that delayed and diminished feeding responses in old animals may be due to ineffective neural signaling and implicate the orexin A network as one feeding system affected by aging.


Subject(s)
Aging/physiology , Brain/metabolism , Eating/drug effects , Eating/physiology , Intracellular Signaling Peptides and Proteins/pharmacology , Neuropeptides/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Animals , Brain/cytology , Immunohistochemistry , Male , Mediodorsal Thalamic Nucleus/metabolism , Neurons/metabolism , Orexins , Paraventricular Hypothalamic Nucleus/metabolism , Rats , Rats, Inbred F344 , Time Factors
4.
Brain Res ; 1015(1-2): 9-14, 2004 Jul 23.
Article in English | MEDLINE | ID: mdl-15223361

ABSTRACT

It is well known that the mu opioid agonist, Tyr-D-Ala-Gly-(me) Phe-Gly-ol (DAMGO), increases food intake in rats when injected into a variety of brain sites including the central nucleus of the amygdala (CeA). Immunohistochemical studies measuring c-Fos immunoreactivity (IR) suggest that the CeA contributes to opioid-related feeding. In the current study, we injected 2 nmol of DAMGO and measured food intake, c-Fos IR levels in various brain sites involved in feeding behavior, and mu opioid receptor internalization. We also studied the effect of CeA-injected DAMGO on LiCl-induced increases in c-Fos IR in the amygdala. As was expected, intra-CeA injection of DAMGO increased food intake of rats over a 4-h period. DAMGO injection into the CeA also resulted in mu opioid receptor internalization in the CeA, indicating activation of mu opioid receptor expressing neurons in this site. Administration of DAMGO into the CeA increased c-Fos IR levels in the shell of the nucleus accumbens (NAcc), but not in 17 other brain sites that were studied. We also found that intra-CeA injection of DAMGO, prior to LiCl injection, decreased c-Fos IR levels in the CeA compared to vehicle-injected rats. Thus, intra-CeA administration of DAMGO may increase feeding, in part, by activating neurons in the shell of the nucleus accumbens and by inhibiting activity of selected neurons in the CeA.


Subject(s)
Amygdala/metabolism , Appetite Regulation , Eating , Proto-Oncogene Proteins c-fos/metabolism , Receptors, Opioid, mu/metabolism , Animals , Enkephalin, Ala(2)-MePhe(4)-Gly(5)- , Feeding and Eating Disorders/chemically induced , Feeding and Eating Disorders/metabolism , Hyperphagia/chemically induced , Immunohistochemistry , Male , Nerve Net/metabolism , Nucleus Accumbens/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Opioid, mu/agonists
5.
Am J Physiol Regul Integr Comp Physiol ; 284(6): R1409-17, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12736178

ABSTRACT

Orexin A (OX-A) administered in the lateral hypothalamus (LH) increases feeding in a dose-dependent manner. The LH is a relatively large neural structure with a heterogeneous profile of neural inputs, efferent projections, and orexin receptor distribution. We sought to determine the LH region most sensitive to the feeding stimulatory effect of OX-A injection. Fifty-six male Sprague-Dawley rats were fitted with cannulas 1 mm above four separate LH regions approximately 1 mm apart in the rostral-caudal direction. There were 14-16 animals/LH region. After recovery, animals received either artificial cerebrospinal fluid or OX-A (250, 500, or 1,000 pmol). To determine whether there is a circadian effect of LH OX-A on the feeding response, we performed injections at 0200, 0900, 1400, and 2100. Food intake was measured at 1, 2, and 4 h after injection. The most rostral extent of the LH was the only region in which injection of OX-A significantly stimulated feeding. Within this region, feeding was increased at all times of the day, although the most robust and only significant feeding response occurred after the afternoon injection (1400) of OX-A. To determine the extent to which the metabolic status of the rat contributed to the circadian specificity of orexin-induced feeding, animals were placed on a restricted diet and injected with OX-A in the most rostral region of the LH. Under these conditions, OX-A significantly increased feeding and more robustly when compared with animals on a nonrestricted diet. These data suggest that the rostral LH is the only region of the LH sensitive to the injection of OX-A, and the metabolic status of the animal at the time of injection may influence the feeding response to OX-A.


Subject(s)
Carrier Proteins/pharmacology , Circadian Rhythm/drug effects , Feeding Behavior/drug effects , Feeding Behavior/physiology , Hypothalamic Area, Lateral/drug effects , Hypothalamic Area, Lateral/physiology , Intracellular Signaling Peptides and Proteins , Neuropeptides/pharmacology , Animals , Carrier Proteins/administration & dosage , Dose-Response Relationship, Drug , Food Deprivation , Hypothalamic Area, Lateral/anatomy & histology , Male , Neuropeptides/administration & dosage , Orexins , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...