Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 31(14): 3903-3916, 2022 07.
Article in English | MEDLINE | ID: mdl-35593510

ABSTRACT

Although abiotic environmental factors have been historically regarded as the dominant deterministic process in microbial community assembly, recent studies indicate that biotic interactions may be equally significant. However, the extent to which both processes are important in assembly of belowground communities is unknown. Along two environmental gradients: alkalinity (ranging from pH ~7 to ~11) and habitat type (lakes, shorelines, and prairies around lakes) present in the Western Nebraska Sandhills, we used 18S rRNA gene marker metabarcoding and statistical analyses, including generalized dissimilarity modelling (GDM), to evaluate the dynamics between abiotic and biotic factors that might play a role in nematode community assembly. Lakes supported the least diverse and prairies the most diverse communities with completely distinct compositions. We also observed a potential role of alkalinity in shaping these communities but only in lakes. Generally, GDMs indicated the influence of both abiotic and biotic factors. However, their relative importance in explaining community variability was dependent on the habitat. Biotic factors influenced the lake communities most, followed by shorelines and prairies, explaining ~47%, 27% and 8% of the variation, respectively. In contrast, the role of abiotic factors was relatively similar in lakes, shorelines and prairies (~15%, 18% and 14% of the variation, respectively). Most variation in the shorelines (62%) and prairies (82%) remained unexplained, suggesting the potential importance of factors associated with specific traits or a stronger role of stochastic processes. Nevertheless, our findings suggest both deterministic processes are important in nematode community assembly, but their specific contributions are context-dependent.


Subject(s)
Microbiota , Nematoda , Animals , Lakes , Nebraska , Nematoda/genetics
2.
Genome ; 64(3): 232-241, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32526150

ABSTRACT

Nematodes are frequently cited as underrepresented in faunistic surveys using DNA barcoding with COI. This underrepresentation is generally attributed to a limited presence of nematodes in DNA databases which, in turn, is often ascribed to structural variability and high evolutionary rates in nematode mitochondrial genomes. Empirical evidence, however, indicates that many taxa are readily amplified with primer sets specifically targeted to different nematode families. Here we report the development of a COI reference library of 1726 specimens in the terrestrial plant parasitic nematode superfamily Criconematoidea. Specimens collected during an ecoregion survey of North America were individually photographed, measured, and PCR amplified to produce a 721 bp region of COI for taxonomic analysis. A neighbor-joining tree structured the dataset into 179 haplotype groups that generally conformed to morphospecies in traditional analysis or Barcode Index Numbers (BINs) in the BOLD system, although absent formal BIN membership due to insufficient overlap with the Folmer region of COI. Approximately one-third of the haplotype groups could be associated with previously described species. The geographic distribution of criconematid nematode species suggests a structure influenced by the major habitat types in the United States and Canada. All sequences collected in the ecoregion survey are deposited in BOLD.


Subject(s)
Rhabditida/classification , Animals , Biodiversity , Canada , DNA Barcoding, Taxonomic , Databases, Nucleic Acid , Haplotypes , Plants/parasitology , Rhabditida/genetics , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...