Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(12): 10248-10262, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38848667

ABSTRACT

Herein, we describe the design and synthesis of γ-secretase modulator (GSM) clinical candidate PF-06648671 (22) for the treatment of Alzheimer's disease. A key component of the design involved a 2,5-cis-tetrahydrofuran (THF) linker to impart conformational rigidity and lock the compound into a putative bioactive conformation. This effort was guided using a pharmacophore model since crystallographic information was not available for the membrane-bound γ-secretase protein complex at the time of this work. PF-06648671 achieved excellent alignment of whole cell in vitro potency (Aß42 IC50 = 9.8 nM) and absorption, distribution, metabolism, and excretion (ADME) parameters. This resulted in favorable in vivo pharmacokinetic (PK) profile in preclinical species, and PF-06648671 achieved a human PK profile suitable for once-a-day dosing. Furthermore, PF-06648671 was found to have favorable brain availability in rodent, which translated into excellent central exposure in human and robust reduction of amyloid ß (Aß) 42 in cerebrospinal fluid (CSF).


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Alzheimer Disease/drug therapy , Humans , Animals , Amyloid beta-Peptides/metabolism , Rats , Structure-Activity Relationship , Mice , Male , Drug Discovery , Furans/pharmacology , Furans/pharmacokinetics , Furans/chemical synthesis , Furans/chemistry , Furans/therapeutic use , Rats, Sprague-Dawley , Brain/metabolism
2.
J Med Chem ; 64(8): 5049-5066, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33844532

ABSTRACT

Bispecific degraders (PROTACs) of ERα are expected to be advantageous over current inhibitors of ERα signaling (aromatase inhibitors/SERMs/SERDs) used to treat ER+ breast cancer. Information from DNA-encoded chemical library (DECL) screening provides a method to identify novel PROTAC binding features as the linker positioning, and binding elements are determined directly from the screen. After screening ∼120 billion DNA-encoded molecules with ERα WT and 3 gain-of-function (GOF) mutants, with and without estradiol to identify features that enrich ERα competitively, the off-DNA synthesized small molecule exemplar 7 exhibited nanomolar ERα binding, antagonism, and degradation. Click chemistry synthesis on an alkyne E3 ligase engagers panel and an azide variant of 7 rapidly generated bispecific nanomolar degraders of ERα, with PROTACs 18 and 21 inhibiting ER+ MCF7 tumor growth in a mouse xenograft model of breast cancer. This study validates this approach toward identifying novel bispecific degrader leads from DECL screening with minimal optimization.


Subject(s)
DNA/chemistry , Estrogen Receptor alpha/metabolism , Small Molecule Libraries/chemistry , Animals , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Survival/drug effects , Click Chemistry , DNA/metabolism , Estrogen Antagonists/chemistry , Estrogen Antagonists/metabolism , Estrogen Antagonists/pharmacology , Estrogen Antagonists/therapeutic use , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/genetics , Female , Half-Life , Humans , Indoles/chemistry , Indoles/metabolism , Kinetics , Mice , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Structure-Activity Relationship , Xenograft Model Antitumor Assays
3.
ACS Med Chem Lett ; 6(5): 596-601, 2015 May 14.
Article in English | MEDLINE | ID: mdl-26005540

ABSTRACT

Herein we describe the design and synthesis of a series of pyridopyrazine-1,6-dione γ-secretase modulators (GSMs) for Alzheimer's disease (AD) that achieve good alignment of potency, metabolic stability, and low MDR efflux ratios, while also maintaining favorable physicochemical properties. Specifically, incorporation of fluorine enabled design of metabolically less liable lipophilic alkyl substituents to increase potency without compromising the sp(3)-character. The lead compound 21 (PF-06442609) displayed a favorable rodent pharmacokinetic profile, and robust reductions of brain Aß42 and Aß40 were observed in a guinea pig time-course experiment.

4.
J Med Chem ; 57(3): 1046-62, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24428186

ABSTRACT

Herein we describe the design and synthesis of a novel series of γ-secretase modulators (GSMs) that incorporates a pyridopiperazine-1,6-dione ring system. To align improved potency with favorable ADME and in vitro safety, we applied prospective physicochemical property-driven design coupled with parallel medicinal chemistry techniques to arrive at a novel series containing a conformationally restricted core. Lead compound 51 exhibited good in vitro potency and ADME, which translated into a favorable in vivo pharmacokinetic profile. Furthermore, robust reduction of brain Aß42 was observed in guinea pig at 30 mg/kg dosed orally. Through chemical biology efforts involving the design and synthesis of a clickable photoreactive probe, we demonstrated specific labeling of the presenilin N-terminal fragment (PS1-NTF) within the γ-secretase complex, thus gaining insight into the binding site of this series of GSMs.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Pyridazines/chemical synthesis , Pyridines/chemical synthesis , Amyloid Precursor Protein Secretases/chemistry , Amyloid beta-Peptides/metabolism , Animals , Binding Sites , CHO Cells , Cricetinae , Cricetulus , Drug Design , Guinea Pigs , HEK293 Cells , Humans , Peptide Fragments/metabolism , Presenilin-1/chemistry , Pyridazines/pharmacokinetics , Pyridazines/pharmacology , Pyridines/pharmacokinetics , Pyridines/pharmacology , Stereoisomerism , Structure-Activity Relationship
5.
Org Lett ; 15(3): 642-5, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23330785

ABSTRACT

A facile one-pot synthesis of 3,4-dihydro-1H-pyrido[1,2-a]pyrazine-1,6(2H)-diones (pyridopyrazine-1,6-diones) has been developed which employs a sequential coupling/cyclization reaction of 6-hydroxypicolinic acids and ß-hydroxylamines. The transformation proceeds in good yield under mild conditions using O-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) to both carry out the amide formation and activate the hydroxyl group for intramolecular alkylation.


Subject(s)
Heterocyclic Compounds, 2-Ring/chemical synthesis , Picolinic Acids/chemistry , Pyrazines/chemical synthesis , Pyridines/chemical synthesis , Catalysis , Combinatorial Chemistry Techniques , Cyclization , Heterocyclic Compounds, 2-Ring/chemistry , Molecular Structure , Pyrazines/chemistry , Pyridines/chemistry
6.
Org Lett ; 14(11): 2890-3, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22612479

ABSTRACT

A new and useful procedure for the macrocyclization of linear peptides is described. The natural amino acid side chains of tyrosine (phenol), lysine (alkylamine), and histidine (imidazole) react in an intramolecular fashion with a pendent pyridine-N-oxide-carboxamide, which is selectively activated by the phosphonium salt, PyBroP. The reaction is mild, rapid, and efficient with a potentially large substrate scope. Multiple examples are provided with full characterization and analyses, including a novel aza-variant of the C-O-D ring system of vancomycin.


Subject(s)
Chemistry, Organic/methods , Peptides, Cyclic/chemical synthesis , Peptides/chemistry , Cyclization , Histidine/chemistry , Lysine/chemistry , Models, Molecular , Molecular Structure , Peptides, Cyclic/chemistry , Vancomycin/chemistry
7.
Bioorg Med Chem Lett ; 22(8): 2906-11, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22429469

ABSTRACT

We report the discovery and optimization of a novel series of dihydrobenzofuran amides as γ-secretase modulators (GSMs). Strategies for aligning in vitro potency with drug-like physicochemical properties and good microsomal stability while avoiding P-gp mediated efflux are discussed. Lead compounds such as 35 and 43 have moderate to good in vitro potency and excellent selectivity against Notch. Good oral bioavailability was achieved as well as robust brain Aß42 lowering activity at 100 mg/kg po dose.


Subject(s)
Amides/chemical synthesis , Amides/pharmacology , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Drug Design , Administration, Oral , Amides/chemistry , Animals , Benzofurans/chemical synthesis , Benzofurans/chemistry , Benzofurans/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Guinea Pigs , Inhibitory Concentration 50 , Molecular Structure , Protein Binding , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...