Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Am Soc Mass Spectrom ; 32(6): 1459-1468, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-33998788

ABSTRACT

In the search for alternatives to chlorine-containing gases, tetrafluoroethane, CF3CH2F (R134a), a widely used refrigerant gas, has been recognized as a promising substitute for dichlorodifluoromethane, CCl2F2 (R12). When R12 is replaced by R134a, the global warming potential drops from 8100 to 1430, the ozone depletion potential changes from 1 to 0, and the atmospheric lifetime decreases from 100 to 14 years. Electron interactions in the gas phase play a fundamental role in the atmospheric sciences. Here, we present a detailed study on electron-driven fragmentation pathways of CF3CH2F, in which we have investigated processes induced by both electron ionization and electron attachment. The measurements allow us to report the ion efficiency curves for ion formation in the energy range of 0 up to 25 eV. For positive ion formation, R134a dissociates into a wide assortment of ions, in which CF3+ is observed as the most abundant out of seven ions with a relative intensity above 2%. The results are supported by quantum chemical calculations based on bound state techniques, electron-impact ionization models, and electron-molecule scattering simulations, showing a good agreement. Moreover, the experimental first ionization potential was found at 13.10 ± 0.17 eV and the second at around 14.25 eV. For negative ion formation, C2F3- was detected as the only anion formed, above 8.3 eV. This study demonstrates the role of electrons in the dissociation of R134a, which is relevant for an improvement of the refrigeration processes as well as in atmospheric chemistry and plasma sciences.

3.
Anal Chem ; 90(9): 5664-5670, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29629760

ABSTRACT

The high sensitivity of proton transfer reaction-mass spectrometry (PTR-MS) makes it a suitable analytical tool for detecting trace compounds. Its specificity is primarily determined by the accuracy of identifying the m/ z of the product ions specific to a particular compound. However, specificity can be enhanced by changing the product ions (concentrations and types) through modifying the reduced electric field. For current PTR-MS systems, this is not possible for trace compounds that would only be present in the reaction chamber of a PTR-MS for a short time (seconds). For such circumstances, it is necessary to change the reduce electric field swiftly if specificity enhancements are to be achieved. In this paper we demonstrate such a novel approach, which permits any compound that may only be present in the drift tube for seconds to be thoroughly investigated. Specifically, we have developed hardware and software which permits the reaction region's voltages to be rapidly switched at a frequency of 0.1-5 Hz. We show how this technique can be used to provide a higher confidence in the identification of compounds than is possible by keeping to one reduced electric field value through illustrating the detection of explosives. Although demonstrated for homeland security applications, this new technique has applications in other analytical areas and disciplines where rapid changes in a compound's concentration can occur, for example, in the Earth's atmosphere, plant emissions and in breath. Importantly, this adaptation provides a method for improved selectivity without expensive instrumental changes or the need for high mass resolution instruments.

4.
Anal Chem ; 88(21): 10624-10630, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27715015

ABSTRACT

A key issue with any analytical system based on mass spectrometry with no initial separation of compounds is to have a high level of confidence in chemical assignment. This is particularly true for areas of security, such as airports, and recent terrorist attacks have highlighted the need for reliable analytical instrumentation. Proton transfer reaction mass spectrometry is a useful technology for these purposes because the chances of false positives are small owing to the use of a mass spectrometric analysis. However, the detection of an ion at a given m/z for an explosive does not guarantee that that explosive is present. There is still some ambiguity associated with any chemical assignment owing to the presence of isobaric compounds and, depending on mass resolution, ions with the same nominal m/z. In this article we describe how for the first time the use of a radio frequency ion-funnel (RFIF) in the reaction region (drift tube) of a proton transfer reaction-time-of-flight-mass spectrometer (PTR-ToF-MS) can be used to enhance specificity by manipulating the ion-molecule chemistry through collisional induced processes. Results for trinitrotoluene, dinitrotoluenes, and nitrotoluenes are presented to demonstrate the advantages of this new RFIF-PTR-ToF-MS for analytical chemical purposes.

SELECTION OF CITATIONS
SEARCH DETAIL
...