Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(5): e202317550, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38069591

ABSTRACT

In this paper, we report BF3 ⋅ OEt2 as a catalyst to shuttle equivalents of HF from a fluoroalkane to an alkyne. Reactions of terminal and internal aliphatic alkynes led to formation of difluoroalkane products, while diarylalkynes can be selectively converted into fluoroalkenes. The method tolerates numerous sensitive functional groups including halogen, protected amine, ester and thiophene substituents. Mechanistic studies (DFT, probe experiments) suggest the catalyst is involved in both the defluorination and fluorination steps, with BF3 acting as a Lewis acid and OEt2 a weak Lewis base that mediates proton transfer. In certain cases, the interconversion of fluoroalkene and difluoroalkane products was found to be reversible. The new catalytic system was applied to demonstrate proof-of-concept recycling of poly(vinylidene difluoride).

2.
ACS Catal ; 12(6): 3411-3419, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35433106

ABSTRACT

HF transfer reactions between organic substrates are potentially useful transformations. Such reactions require the development of catalytic systems that can promote both defluorination and fluorination steps in a single reaction sequence. Herein, we report a catalytic protocol in which an equivalent of HF is generated from a perfluoroarene | nucleophile pair and transferred directly to an alkyne. The reaction is catalyzed by [Au(IPr)NiPr2] (IPr = N,N'-1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene). HF transfer generates two useful products in the form of functionalized fluoroarenes and fluoroalkenes. Mechanistic studies (rate laws, KIEs, density functional theory (DFT) calculations, competition experiments) are consistent with the Au(I) catalyst facilitating a catalytic network involving both concerted SNAr and hydrofluorination steps. The nature of the nucleophile impacts the turnover-limiting step. The cSNAr step is turnover-limiting for phenol-based nucleophiles, while protodeuaration likely becomes turnover-limiting for aniline-based nucleophiles. The approach removes the need for direct handling of HF reagents in hydrofluorination and offers possibilities to manipulate the fluorine content of organic molecules through catalysis.

3.
Org Lett ; 22(23): 9351-9355, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33201721

ABSTRACT

A new organocatalyzed fluoride metathesis reaction between fluoroarenes and carbonyl derivatives is reported. The reaction exchanges fluoride (F-) and alternate nucleophiles (OAc-, OCO2R-, SR-, Cl-, CN-, NCS-). The approach provides a conceptually novel route to manipulate the fluorine content of organic molecules. When the fluorination and defluorination steps are combined into a single catalytic cycle, a byproduct free and 100% atom-efficient reaction can be achieved.

4.
Angew Chem Int Ed Engl ; 57(51): 16893-16897, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30370965

ABSTRACT

Switchable polymerisation catalysis enables block polymer sequence selectivity from monomer mixtures, resulting in the formation of multiblock polyesters. The aluminium salphen catalyst switches between two different polymerisation mechanisms and selectively enchains mixtures of commercially available monomers: lactide, phthalic anhydride, and propene oxide. Sequential monomer mixture additions yield multi-block polyesters featuring 3, 7, 11, 15, 19, 23, and 27 blocks. The unparalleled catalytic selectivity can be used to access completely new multi-block polyesters relevant for future applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...