Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Environ Assess Manag ; 18(1): 10-18, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33982382

ABSTRACT

Today, only few ready-to-use and convenient decision-making tools are available in ecotoxicology concerning accumulation and effects of chemical substances on organisms, accounting for exposure situations that are known to be complex (routes of exposure, metabolism, mixtures, etc.). This paper presents new perspectives on the generic calculation of bioaccumulation metrics via the innovative web tool MOSAICbioacc (http://mosaic.univ-lyon1.fr/bioacc). MOSAICbioacc provides all kinds of bioaccumulation metrics associated with their uncertainty whatever the species-compound combination. MOSAICbioacc expects accumulation-depuration data as inputs, even with complex exposure and clearance patterns, to quickly perform their relevant analysis. MOSAICbioacc intends to facilitate the daily work of regulators, or any ecotoxicologist, who will freely benefit from a user-friendly online interface that automatically fits toxicokinetic models without need for users to invest in the technical aspects to get bioaccumulation metrics estimates. MOSAICbioacc also provides all results in a fully transparent way to ensure reproducibility. Integr Environ Assess Manag 2022;18:10-18. © 2021 SETAC.


Subject(s)
Bioaccumulation , Ecotoxicology , Environmental Monitoring , Reproducibility of Results , Risk Assessment
2.
Environ Sci Pollut Res Int ; 29(20): 29244-29257, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34255258

ABSTRACT

In the European Union, more than 100,000 man-made chemical substances are awaiting an environmental risk assessment (ERA). Simultaneously, ERA of these chemicals has now entered a new era requiring determination of risks for physiologically diverse species exposed to several chemicals, often in mixtures. Additionally, recent recommendations from regulatory bodies underline a crucial need for the use of mechanistic effect models, allowing assessments that are not only ecologically relevant, but also more integrative, consistent and efficient. At the individual level, toxicokinetic-toxicodynamic (TKTD) models are particularly encouraged for the regulatory assessment of pesticide-related risks on aquatic organisms. In this paper, we first briefly present a classical dose-response model to showcase the on-line MOSAIC tool, which offers all necessary services in a turnkey web platform, whatever the type of data analyzed. Secondly, we focus on the necessity to account for the time-dimension of the exposure by illustrating how MOSAIC can support a robust calculation of bioaccumulation metrics. Finally, we show how MOSAIC can be of valuable help to fully complete the EFSA workflow regarding the use of TKTD models, especially with GUTS models, providing a user-friendly interface for calibrating, validating and predicting survival over time under any time-variable exposure scenario of interest. Our conclusion proposes a few lines of thought for an easier use of modelling in ERA.


Subject(s)
Pesticides , Xenobiotics , Bioaccumulation , Humans , Risk Assessment , Toxicokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...