Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 40(1): 111026, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35793626

ABSTRACT

Enolase is a highly conserved enzyme that presents in all organisms capable of glycolysis or fermentation. Its immediate product phosphoenolpyruvate is essential for other important processes like peptidoglycan synthesis and the phosphotransferase system in bacteria. Therefore, enolase inhibitors are of great interest. Here, we report that Gp60, a phage-encoded enolase inhibitor protein (PEIP) of bacteriophage SPO1 for Bacillus subtilis, is an enolase inhibitor. PEIP-expressing bacteria exhibit growth attenuation, thinner cell walls, and safranin color in Gram staining owing to impaired peptidoglycan synthesis. We solve the structure of PEIP-enolase tetramer and show that PEIP disassembles enolase by disrupting the basic dimer unit. The structure reveals that PEIP does not compete for substrate binding but induces a cascade of conformational changes that limit accessibility to the enolase catalytic site. This phage-inspired disassembly of enolase represents an alternative strategy for the development of anti-microbial drugs.


Subject(s)
Bacillus subtilis , Bacteriophages , Bacillus subtilis/metabolism , Bacteriophages/metabolism , Catalytic Domain , Peptidoglycan/metabolism , Phosphopyruvate Hydratase/metabolism
2.
Front Microbiol ; 12: 692512, 2021.
Article in English | MEDLINE | ID: mdl-34149677

ABSTRACT

DNA mimicry by proteins is a strategy that employed by some proteins to occupy the binding sites of the DNA-binding proteins and deny further access to these sites by DNA. Such proteins have been found in bacteriophage, eukaryotic virus, prokaryotic, and eukaryotic cells to imitate non-coding functions of DNA. Here, we report another phage protein Gp44 from bacteriophage SPO1 of Bacillus subtilis, employing mimicry as part of unusual strategy to inhibit host RNA polymerase. Consisting of three simple domains, Gp44 contains a DNA binding motif, a flexible DNA mimic domain and a random-coiled domain. Gp44 is able to anchor to host genome and interact bacterial RNA polymerase via the ß and ß' subunit, resulting in bacterial growth inhibition. Our findings represent a non-specific strategy that SPO1 phage uses to target different bacterial transcription machinery regardless of the structural variations of RNA polymerases. This feature may have potential applications like generation of genetic engineered phages with Gp44 gene incorporated used in phage therapy to target a range of bacterial hosts.

3.
J Biol Chem ; 294(46): 17501-17511, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31362989

ABSTRACT

Like eukaryotic and archaeal viruses, which coopt the host's cellular pathways for their replication, bacteriophages have evolved strategies to alter the metabolism of their bacterial host. SPO1 bacteriophage infection of Bacillus subtilis results in comprehensive remodeling of cellular processes, leading to conversion of the bacterial cell into a factory for phage progeny production. A cluster of 26 genes in the SPO1 genome, called the host takeover module, encodes for potentially cytotoxic proteins that specifically shut down various processes in the bacterial host, including transcription, DNA synthesis, and cell division. However, the properties and bacterial targets of many genes of the SPO1 host takeover module remain elusive. Through a systematic analysis of gene products encoded by the SPO1 host takeover module, here we identified eight gene products that attenuated B. subtilis growth. Of the eight phage gene products that attenuated bacterial growth, a 25-kDa protein called Gp53 was shown to interact with the AAA+ chaperone protein ClpC of the ClpCP protease of B. subtilis Our results further reveal that Gp53 is a phage-encoded adaptor-like protein that modulates the activity of the ClpCP protease to enable efficient SPO1 phage progeny development. In summary, our findings indicate that the bacterial ClpCP protease is the target of xenogeneic (dys)regulation by a SPO1 phage-derived factor and add Gp53 to the list of antibacterial products that target bacterial protein degradation and therefore may have utility for the development of novel antibacterial agents.


Subject(s)
Bacillus Phages/genetics , Bacillus subtilis/virology , Viral Proteins/genetics , Bacillus Phages/chemistry , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Cell Division/genetics , DNA Replication/genetics , DNA, Viral/chemistry , DNA, Viral/genetics , Endopeptidases/chemistry , Endopeptidases/genetics , Viral Proteins/chemistry
4.
J Mol Biol ; 431(20): 4078-4092, 2019 09 20.
Article in English | MEDLINE | ID: mdl-30776429

ABSTRACT

The parasitic life cycle of viruses involves the obligatory subversion of the host's macromolecular processes for efficient viral progeny production. Viruses that infect bacteria, bacteriophages (phages), are no exception and have evolved sophisticated ways to control essential biosynthetic machineries of their bacterial prey to benefit phage development. The xenogeneic regulation of bacterial cell function is a poorly understood area of bacteriology. The activity of the bacterial transcription machinery, the RNA polymerase (RNAP), is often regulated by a variety of mechanisms involving small phage-encoded proteins. In this review, we provide a brief overview of known phage proteins that interact with the bacterial RNAP and compare how two prototypical phages of Escherichia coli, T4 and T7, use small proteins to "puppeteer" the bacterial RNAP to ensure a successful infection.


Subject(s)
Bacteriophage T4/growth & development , Bacteriophage T7/growth & development , Escherichia coli/genetics , Escherichia coli/virology , Gene Expression Regulation, Bacterial , Microbial Interactions , Transcription, Genetic , Bacterial Proteins/metabolism , Bacteriophage T4/genetics , Bacteriophage T7/genetics , DNA-Directed RNA Polymerases/metabolism , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...