Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(22): 19152-19160, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28521089

ABSTRACT

Heavy metal contamination of water supplies poses a serious threat to public health, prompting the development of novel and sustainable treatment technologies. One promising approach is to molecularly engineer the chemical affinity of a material for the targeted removal of specific molecules from solution. In this work, nanoporous polymer thin films generated from tailor-made block polymers were functionalized with the bio-inspired moieties glutathione and cysteamine for the removal of heavy metal ions, including lead and cadmium, from aqueous solutions. In a single equilibrium stage, the films achieved removal rates of the ions in excess of 95%, which was consistent with predictions based on the engineered material properties. In a flow-through configuration, the thin films achieved an even greater removal rate of the metal ions. Furthermore, in mixed ion solutions the capacity of the thin films, and corresponding removal rates, did not demonstrate any reduction due to competitive adsorption effects. After such experiments the material was repeatedly regenerated quickly with no observed loss in capacity. Thus, these membranes provide a sustainable platform for the efficient purification of lead- and cadmium-contaminated water sources to safe levels. Moreover, their straightforward chemical modifications suggest that they could be engineered to treat sources containing other recalcitrant environmental contaminants as well.

2.
ACS Macro Lett ; 6(7): 726-732, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-35650852

ABSTRACT

The well-defined nanostructure of membranes manufactured from self-assembled block polymers enables highly selective separations; however, recent efforts to push the pore size of block polymer-based membranes to the lower end of the size spectrum have only been moderately successful for a variety of reasons. For instance, the conformational changes of the stimuli-responsive functional groups lining the pore walls of some block polymer membranes result in varied pore sizes that limit their operational range. Here, we overcome this challenge through the directed design of the third moiety of an A-B-C triblock polymer. The use of this macromolecular design paradigm allows for the preparation of a 500 nm thick polyisoprene-b-polystyrene-b-poly(2-acrylamido-ethane-1,1-disfulonic acid) (PI-PS-PADSA) coating atop a hollow fiber membrane support. This nanoporous test bed, which exhibits an average pore radius of 1 nm, demonstrates an extremely high solute selectivity by fully gating solutes that have only an 8 Å size difference, a separation that is based solely on a sieving mechanism. Furthermore, the nanoscale structural characteristics of the solvated PADSA pore walls are elucidated by quantifying the rejection of neutral solutes and calculating the hydraulic permeability values in solutions of high ionic strength (1 mM ≤ I ≤ 3 M) and over a broad range of solution pH (1 ≤ pH ≤ 13). These key results provide a solid foundation for defining structure-property-performance relationships in the emerging area of nanoporous triblock polymer thin films. Moreover, the successful demonstration of the test bed separation device offers a tangible means by which to manufacture next-generation nanofiltration membranes that require a robust performance profile over a dynamic range of conditions.

3.
J Am Chem Soc ; 138(22): 7030-9, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27172428

ABSTRACT

Stimuli-responsive soft materials are a highly studied field due to their wide-ranging applications; however, only a small group of these materials display hysteretic responses to stimuli. Moreover, previous reports of this behavior have typically shown it to be short-lived. In this work, poly(acrylic acid) (PAA) chains at extremely high grafting densities and confined in nanoscale pores displayed a unique long-lived hysteretic behavior caused by their ability to form a metastable hydrogen bond network. Hydraulic permeability measurements demonstrated that the conformation of the PAA chains exhibited a hysteretic dependence on pH, where different effective pore diameters arose in a pH range of 3 to 8, as determined by the pH of the previous environment. Further studies using Fourier transform infrared (FTIR) spectroscopy demonstrated that the fraction of ionized PAA moieties depended on the thin film history; this was corroborated by metal adsorption capacity, which demonstrated the same pH dependence. This hysteresis was shown to be persistent, enduring for days, in a manner unlike most other systems. The hypothesis that hydrogen bonding among PAA units contributed to the hysteretic behavior was supported by experiments with a urea solution, which disrupted the metastable hydrogen bonded state of PAA toward its ionized state. The ability of PAA to hydrogen bond within these confined pores results in a stable and tunable hysteresis not previously observed in homopolymer materials. An enhanced understanding of the polymer chemistry and physics governing this hysteresis gives insight into the design and manipulation of next-generation sensors and gating materials in nanoscale applications.

4.
Langmuir ; 31(40): 11113-23, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26391625

ABSTRACT

Membrane adsorbers are a proposed alternative to packed beds for chromatographic separations. To date, membrane adsorbers have suffered from low binding capacities and/or complex processing methodologies. In this work, a polyisoprene-b-polystyrene-b-poly(N,N-dimethylacrylamide) (PI-PS-PDMA) triblock polymer is cast into an asymmetric membrane that possesses a high density of nanopores (d ∼ 38 nm) at the upper surface of the membrane. Exposing the membrane to a 6 M aqueous hydrochloric acid solution converts the PDMA brushes that line the pore walls to poly(acrylic acid) (PAA) brushes, which are capable of binding metal ions (e.g., copper ions). Using mass transport tests and static binding experiments, the saturation capacity of the PI-PS-PAA membrane was determined to be 4.1 ± 0.3 mmol Cu(2+) g(-1). This experimental value is consistent with the theoretical binding capacity of the membranes, which is based on the initial PDMA content of the triblock polymer precursor and assumes a 1:1 stoichiometry for the binding interaction. The uniformly sized nanoscale pores provide a short diffusion length to the binding sites, resulting in a sharp breakthrough curve. Furthermore, the membrane is selective for copper ions over nickel ions, which permeate through the membrane over 10 times more rapidly than copper during the loading stage. This selectivity is present despite the fact that the sizes of these two ions are nearly identical and speaks to the chemical selectivity of the triblock polymer-based membrane. Furthermore, addition of a pH 1 solution releases the bound copper rapidly, allowing the membrane to be regenerated and reused with a negligible loss in binding capacity. Because of the high binding capacities, facile processing method implemented, and ability to tailor further the polymer brushes lining the pore walls using straightforward coupling reactions, these membrane adsorbers based on block polymer precursors have potential as a separation media that can be designed to a variety of specific applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...