Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Malar J ; 23(1): 77, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486288

ABSTRACT

BACKGROUND: Pyrethroid-based indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) have been employed as key vector control measures against malaria in Namibia. However, pyrethroid resistance in Anopheles mosquitoes may compromise the efficacy of these interventions. To address this challenge, the World Health Organization (WHO) recommends the use of piperonyl butoxide (PBO) LLINs in areas where pyrethroid resistance is confirmed to be mediated by mixed function oxidase (MFO). METHODS: This study assessed the susceptibility of Anopheles gambiae sensu lato (s.l.) mosquitoes to WHO tube bioassays with 4% DDT and 0.05% deltamethrin insecticides. Additionally, the study explored the effect of piperonyl butoxide (PBO) synergist by sequentially exposing mosquitoes to deltamethrin (0.05%) alone, PBO (4%) + deltamethrin (0.05%), and PBO alone. The Anopheles mosquitoes were further identified morphologically and molecularly. RESULTS: The findings revealed that An. gambiae sensu stricto (s.s.) (62%) was more prevalent than Anopheles arabiensis (38%). The WHO tube bioassays confirmed resistance to deltamethrin 0.05% in the Oshikoto, Kunene, and Kavango West regions, with mortality rates of 79, 86, and 67%, respectively. In contrast, An. arabiensis displayed resistance to deltamethrin 0.05% in Oshikoto (82% mortality) and reduced susceptibility in Kavango West (96% mortality). Notably, there was reduced susceptibility to DDT 4% in both An. gambiae s.s. and An. arabiensis from the Kavango West region. Subsequently, a subsample from PBO synergist assays in 2020 demonstrated a high proportion of An. arabiensis in Oshana (84.4%) and Oshikoto (73.6%), and 0.42% of Anopheles quadriannulatus in Oshana. Non-amplifiers were also present (15.2% in Oshana; 26.4% in Oshikoto). Deltamethrin resistance with less than 95% mortality, was consistently observed in An. gambiae s.l. populations across all sites in both 2020 and 2021. Following pre-exposure to the PBO synergist, susceptibility to deltamethrin was fully restored with 100.0% mortality at all sites in 2020 and 2021. CONCLUSIONS: Pyrethroid resistance has been identified in An. gambiae s.s. and An. arabiensis in the Kavango West, Kunene, and Oshikoto regions, indicating potential challenges for pyrethroid-based IRS and LLINs. Consequently, the data highlights the promise of pyrethroid-PBO LLINs in addressing resistance issues in the region.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Nitriles , Pyrethrins , Animals , Insecticides/pharmacology , Piperonyl Butoxide/pharmacology , DDT , Namibia , Mosquito Vectors , Pyrethrins/pharmacology , Insecticide Resistance , Mosquito Control
2.
Parasit Vectors ; 15(1): 436, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36397152

ABSTRACT

BACKGROUND: Although the Republic of Namibia has significantly reduced malaria transmission, regular outbreaks and persistent transmission impede progress towards elimination. Towards an understanding of the protective efficacy, as well as gaps in protection, associated with long-lasting insecticidal nets (LLINs), human and Anopheles behaviors were evaluated in parallel in three malaria endemic regions, Kavango East, Ohangwena and Zambezi, using the Entomological Surveillance Planning Tool to answer the question: where and when are humans being exposed to bites of Anopheles mosquitoes? METHODS: Surveillance activities were conducted during the malaria transmission season in March 2018 for eight consecutive nights. Four sentinel structures per site were selected, and human landing catches and human behavior observations were consented to for a total of 32 collection nights per site. The selected structures were representative of local constructions (with respect to building materials and size) and were at least 100 m from each other. For each house where human landing catches were undertaken, a two-person team collected mosquitoes from 1800 to 0600 hours. RESULTS: Surveillance revealed the presence of the primary vectors Anopheles arabiensis, Anopheles gambiae sensu stricto (s.s.) and Anopheles funestus s.s., along with secondary vectors (Anopheles coustani sensu lato and Anopheles squamosus), with both indoor and outdoor biting behaviors based on the site. Site-specific human behaviors considerably increased human exposure to vector biting. The interaction between local human behaviors (spatial and temporal presence alongside LLIN use) and vector behaviors (spatial and temporal host seeking), and also species composition, dictated where and when exposure to infectious bites occurred, and showed that exposure was primarily indoors in Kavango East (78.6%) and outdoors in Ohangwena (66.7%) and Zambezi (81.4%). Human behavior-adjusted exposure was significantly different from raw vector biting rate. CONCLUSIONS: Increased LLIN use may significantly increase protection and reduce exposure to malaria, but may not be enough to eliminate the disease, as gaps in protection will remain both indoors (when people are awake and not using LLINs) and outdoors. Alternative interventions are required to address these exposure gaps. Focused and question-based operational entomological surveillance together with human behavioral observations may considerably improve our understanding of transmission dynamics as well as intervention efficacy and gaps in protection.


Subject(s)
Anopheles , Malaria , Animals , Humans , Namibia/epidemiology , Mosquito Vectors , Feeding Behavior , Malaria/epidemiology , Malaria/prevention & control
3.
Malar J ; 21(1): 233, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35922803

ABSTRACT

BACKGROUND: Rapid diagnostic tests (RDTs) that rely on the detection of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) have become key tools for diagnosing P. falciparum infection. The utility of RDTs can be limited by PfHRP2 persistence, however it can be a potential benefit in low transmission settings where detection of persistent PfHRP2 using newer ultra-sensitive PfHRP2 based RDTs can serve as a surveillance tool to identify recent exposure. Better understanding of the dynamics of PfHRP2 over the course of a malaria infection can inform optimal use of RDTs. METHODS: A previously published mathematical model was refined to mimic the production and decay of PfHRP2 during a malaria infection. Data from 15 individuals from volunteer infection studies were used to update the original model and estimate key model parameters. The refined model was applied to a cohort of patients from Namibia who received treatment for clinical malaria infection for whom longitudinal PfHRP2 concentrations were measured. RESULTS: The refinement of the PfHRP2 dynamic model indicated that in malaria naïve hosts, P. falciparum parasites of the 3D7 strain produce 33.6 × 10-15 g (95% CI 25.0-42.1 × 10-15 g) of PfHRP2 in vivo per parasite replication cycle, with an elimination half-life of 1.67 days (95% CI 1.11-3.40 days). The refined model included these updated parameters and incorporated individualized body fluid volume calculations, which improved predictive accuracy when compared to the original model. The performance of the model in predicting clearance of PfHRP2 post treatment in clinical samples from six adults with P. falciparum infection in Namibia improved when using a longer elimination half-life of 4.5 days, with 14% to 67% of observations for each individual within the predicted range. CONCLUSIONS: The updated mathematical model can predict the growth and clearance of PfHRP2 during the production and decay of a mono-infection with P. falciparum, increasing the understanding of PfHRP2 antigen dynamics. This model can guide the optimal use of PfHRP2-based RDTs for reliable diagnosis of P. falciparum infection and re-infection in endemic settings, but also for malaria surveillance and elimination programmes in low transmission areas.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Adult , Antigens, Protozoan , Diagnostic Tests, Routine , Humans , Malaria, Falciparum/epidemiology , Models, Theoretical , Namibia , Protozoan Proteins
4.
Nucleic Acids Res ; 47(14): e83, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31114866

ABSTRACT

The growing prevalence of deadly microbes with resistance to previously life-saving drug therapies is a dire threat to human health. Detection of low abundance pathogen sequences remains a challenge for metagenomic Next Generation Sequencing (NGS). We introduce FLASH (Finding Low Abundance Sequences by Hybridization), a next-generation CRISPR/Cas9 diagnostic method that takes advantage of the efficiency, specificity and flexibility of Cas9 to enrich for a programmed set of sequences. FLASH-NGS achieves up to 5 orders of magnitude of enrichment and sub-attomolar gene detection with minimal background. We provide an open-source software tool (FLASHit) for guide RNA design. Here we applied it to detection of antimicrobial resistance genes in respiratory fluid and dried blood spots, but FLASH-NGS is applicable to all areas that rely on multiplex PCR.


Subject(s)
Anti-Bacterial Agents/pharmacology , CRISPR-Cas Systems , Computational Biology/methods , Drug Resistance, Bacterial/drug effects , High-Throughput Nucleotide Sequencing/methods , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacterial Infections/diagnosis , Bacterial Infections/genetics , Bacterial Infections/prevention & control , Drug Resistance, Bacterial/genetics , Humans , Metagenomics/methods , Reproducibility of Results , Sensitivity and Specificity
5.
Elife ; 82019 04 02.
Article in English | MEDLINE | ID: mdl-30938286

ABSTRACT

Local and cross-border importation remain major challenges to malaria elimination and are difficult to measure using traditional surveillance data. To address this challenge, we systematically collected parasite genetic data and travel history from thousands of malaria cases across northeastern Namibia and estimated human mobility from mobile phone data. We observed strong fine-scale spatial structure in local parasite populations, providing positive evidence that the majority of cases were due to local transmission. This result was largely consistent with estimates from mobile phone and travel history data. However, genetic data identified more detailed and extensive evidence of parasite connectivity over hundreds of kilometers than the other data, within Namibia and across the Angolan and Zambian borders. Our results provide a framework for incorporating genetic data into malaria surveillance and provide evidence that both strengthening of local interventions and regional coordination are likely necessary to eliminate malaria in this region of Southern Africa.


Subject(s)
Communicable Diseases, Imported/epidemiology , Disease Transmission, Infectious , Human Migration , Malaria/epidemiology , Plasmodium/isolation & purification , Topography, Medical , Communicable Diseases, Imported/parasitology , Epidemiological Monitoring , Genotyping Techniques , Humans , Malaria/parasitology , Molecular Epidemiology , Namibia/epidemiology , Plasmodium/classification , Plasmodium/genetics
6.
PLoS One ; 13(12): e0206848, 2018.
Article in English | MEDLINE | ID: mdl-30540744

ABSTRACT

Malaria cases sometimes go undetected using RDTs due to their inaccurate use, poor storage conditions and failure to detect low parasitaemia (<50parasites/µL). This could result in continuous transmission of malaria and sustenance of parasite reservoirs. Molecular diagnostic tools are more sensitive and specific than RDTs in the detection of plasmodium parasites. However, the Polymerase Chain Reaction (PCR) is not routinely used because equipment and reagents are expensive and requires highly skilled personnel. Loop-mediated isothermal amplification (LAMP) is a relatively new molecular diagnostic tool for malaria with all the advantages of PCR (sensitive and specific) without the mentioned disadvantages. However, it has not been evaluated extensively as a point of care diagnostic in the field. One hundred and fifteen used RDTs were collected from health facilities in Northern Namibia in a blind study and PCR and LAMP were used to determine the presence of Plasmodium DNA. The sensitivities and PPV were 40.91% and 90% respectively for RDTs, 72.73% and 100% respectively for PCR with LAMP as the golden standard. In low malaria transmission settings, LAMP can be also be considered for use as a surveillance tool to detect all sources of malaria and determine proportion of low parasitaemia infections in order to eliminate them.


Subject(s)
DNA, Protozoan , Malaria , Plasmodium/growth & development , Polymerase Chain Reaction/methods , DNA, Protozoan/blood , DNA, Protozoan/genetics , Female , Humans , Malaria/blood , Malaria/diagnosis , Malaria/genetics , Male , Namibia , Sensitivity and Specificity
7.
Malar J ; 17(1): 255, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-29986717

ABSTRACT

BACKGROUND: As malaria transmission decreases, the proportion of infections that are asymptomatic at any given time increases. This poses a challenge for diagnosis as routinely used rapid diagnostic tests (RDTs) miss asymptomatic malaria cases with low parasite densities due to poor sensitivity. Yet, asymptomatic infections can contribute to onward transmission of malaria and therefore act as infectious reservoirs and perpetuate malaria transmission. This study compared the performance of RDTs to loop-mediated isothermal amplification (LAMP) in the diagnosis of malaria during reactive active case detection surveillance. METHODS: All reported malaria cases in the Engela Health District of Namibia were traced back to their place of residence and persons living within the four closest neighbouring houses to the index case (neighbourhood) were tested for malaria infection with RDTs and dried blood spots (DBS) were collected. LAMP and nested PCR (nPCR) were carried out on all RDTs and DBS. The same procedure was followed in randomly selected control neighbourhoods. RESULTS: Some 3151 individuals were tested by RDT, LAMP and nPCR. Sensitivity of RDTs and LAMP were 9.30 and 95.50%, respectively, and specificities were 99.27 and 99.92%, respectively, compared to nPCR. LAMP carried out on collected RDTs showed a sensitivity and specificity of 95.35 and 99.85% compared to nPCR carried out on DBS. There were 2 RDT samples that were negative by LAMP but the corresponding DBS samples were positive by PCR. CONCLUSION: The study showed that LAMP had the equivalent performance as nPCR for the identification of Plasmodium falciparum infection. Given its relative simplicity to implement over more complex and time-consuming methods, such as PCR, LAMP is particularly useful in elimination settings where high sensitivity and ease of operation are important.


Subject(s)
Diagnostic Tests, Routine/methods , Disease Eradication , Malaria, Falciparum/diagnosis , Nucleic Acid Amplification Techniques/methods , Plasmodium falciparum/isolation & purification , Population Surveillance/methods , Namibia , Polymerase Chain Reaction , Sensitivity and Specificity
8.
Article in English | MEDLINE | ID: mdl-28638861

ABSTRACT

BACKGROUND: Plants have consistently proven to be a reliable and yet not fully explored source of medicines. In light of this, there is a constant demand for new treatment regimens for cancer. Namibia has a rich diversity of plant species of over 4300 with 17 % of them being endemic to Namibia. Plants growing in Namibia's diverse climatic zones produce many secondary metabolites as part of adaptation to their environment. This article focused on the screening of such phytochemicals and their cytotoxic and anticancer properties in vitro. Two Namibian plants Diospyros chamaethamnus and Guibourtia coleosperma were randomly selected for this purpose. MATERIALS AND METHODS: The plants were screened for the presence of coumarins, alkaloids, flavonoids, anthraquinones, steroids and terpenoids using thin layer chromatography. Anticancer screening was performed on a panel of three cancer cell lines, while cytotoxicity was determined using a human fibroblast cell line, both using the SRB method. RESULTS: Alkaloids, anthraquinones, flavonoids and steroids were detected in both organic and aqueous extracts of the two plants. The organic plant extracts had a greater anti-proliferative effect on the cancer cell lines than the aqueous extracts; the D. chamaethamnus organic root extract was the most potent with an IC50 of 16.08, 29.12 and 24.67 µg/mL against TK10, UACC62 and MCF7 cells, respectively. Furthermore, cytotoxicity analysis revealed the non-toxic nature of the extracts, except for the organic root extract of D. chamaethamnus that showed significant cytotoxicity (IC50 13.03 µg/mL). CONCLUSION: D. chamaethamnus is a potential candidate for the development of a plant based cancer treatment. The study showed the value of random screening in drug discovery from plants for pharmacological activity that is unrelated to their ethnomedicinal uses.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Diospyros/chemistry , Fabaceae/chemistry , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/toxicity , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/physiopathology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/toxicity
9.
J Anal Methods Chem ; 2015: 948262, 2015.
Article in English | MEDLINE | ID: mdl-25785232

ABSTRACT

A method was developed for identification and quantification of polyphenols in the leaves of Ximenia caffra using HPLC/UV/MS. Based on analyzing the MS and UV data and in comparison to the authentic standards, a total of 10 polyphenols were identified and quantified, including gallic acid, catechin, quercetin, kaempferol, and their derivatives. The total content of these compounds was found to be approximately 19.45 mg/g in the leaf and the most abundant is quercetin-rutinoside (9.08 mg/g). The total phenolic content as measured by Folin-Ciocalteu assay was 261.87 ± 7.11 mg GAE/g and the total antioxidant capacity as measured in vitro was 1.46 ± 0.01 mmol Trolox/g. The antiproliferative effect of the leaf extract was measured by MTS assay with IC50 value of 239.0 ± 44.5 µg/mL. Cell-based assays show that the leaf extract inhibits the mRNA expression of proinflammatory genes (IL-6, iNOS, and TNF-α) by using RT-qPCR, implying its anti-inflammatory effects. It was further demonstrated that the underlying therapeutic mechanism involves the suppression of NF-κB, a shared pathway between cell death and inflammation.

10.
Mol Cell Biol ; 28(11): 3700-12, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18378695

ABSTRACT

The compartmentalized production of superoxide (*O(2)(-)) by endosomal NADPH oxidase is important in the redox-dependent activation of NF-kappaB following interleukin 1beta (IL-1beta) stimulation. It remains unclear how *O(2)(-) produced within endosomes facilitates redox-dependent signaling events in the cytoplasm. We evaluated *O(2)(-) movement out of IL-1beta-stimulated endosomes and whether SOD1 at the endosomal surface mediates redox-signaling events required for NF-kappaB activation. The relative outward permeability of NADPH-dependent *O(2)(-) from fractionated endosomes was assessed using membrane-permeable (luminol and lucigenin) and -impermeable (isoluminol) luminescent probes for *O(2)(-). In these studies, approximately 60% of *O(2)(-) efflux out of endosomes was inhibited by treatment with either of two anion channel blockers, 4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS) or niflumic acid (NFA). Furthermore, radioisotopic electrodiffusion flux assays on endomembrane proteoliposomes suggested that *O(2)(-) and Cl(-) are transported through the same DIDS-sensitive channel(s). Rab5-based immunoaffinity isolation of IL-1beta-stimulated early endosomes demonstrated SOD1 recruitment to endosomes harboring the IL-1 receptor. Finally, SOD1-deficient cells were found to be defective in their ability to activate NF-kappaB following IL-1beta stimulation. Together, these results suggest that *O(2)(-) exits endosomes through a DIDS-sensitive chloride channel(s) and that SOD1-mediated dismutation of *O(2)(-) at the endosomal surface may produce the localized H(2)O(2) required for redox-activation of NF-kappaB.


Subject(s)
Endosomes/metabolism , Intracellular Membranes/metabolism , Superoxides/metabolism , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Cell Line, Tumor , Chloride Channels/antagonists & inhibitors , Chloride Channels/metabolism , Chlorine/metabolism , Endosomes/drug effects , Endosomes/ultrastructure , Humans , Interleukin-1beta/pharmacology , Intracellular Membranes/ultrastructure , NADP/metabolism , NF-kappa B/metabolism , Niflumic Acid/pharmacology , Oxidation-Reduction , Permeability , Proteolipids/chemistry , Proteolipids/metabolism , Receptors, Interleukin-1 Type I/analysis , Receptors, Interleukin-1 Type I/metabolism , Superoxide Dismutase/analysis , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1 , Xanthine Oxidase/chemistry
11.
J Control Release ; 126(1): 85-94, 2008 Feb 18.
Article in English | MEDLINE | ID: mdl-18166243

ABSTRACT

Patients with advanced or metastatic melanoma have a very poor prognosis, due to the resistance of melanoma cells to conventional chemotherapy. We previously reported that coated cationic liposomes targeted with a monoclonal antibody against the disialoganglioside GD(2) and containing c-myc antisense oligodeoxynucleotides (alpha GD(2)-CCL[c-myc-as]) induced partial tumor growth arrest in melanoma xenografts. Here we addressed the role of c-myc-asODN treatment in the susceptibility to doxorubicin (DXR) in human melanoma cells. Cytotoxicity studies revealed that growth of melanoma cells was inhibited to a greater extent by alpha GD(2)-CCL[c-myc-as] than by the corresponding non-targeted formulations or by free c-myc-as. Targeted c-myc-as sensitized cells to DXR, reducing the IC(50) by approximately 10-fold. Scrambled ODNs had no effect on the IC(50) of DXR. Compared to either treatment alone, combination of targeted c-myc-as and DXR resulted in earlier apoptosis and in cell death after 2 days of treatment. In vivo experiments revealed that liposomal formulations of c-myc-as and DXR, both targeted via GD(2), led to the most pronounced delay in tumor growth when administered in a sequential manner. As a result, their combination translates into a statistically significant suppression of blood vessel density and an enhanced apoptosis, compared to all treatments given separately. Our data indicate the increasing cell sensitivity to DXR by c-myc-asODNs as a promising basis for developing novel anti-tumor strategy against advanced melanoma.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Antibodies, Monoclonal/therapeutic use , Doxorubicin/therapeutic use , Melanoma, Experimental/drug therapy , Oligodeoxyribonucleotides, Antisense/therapeutic use , Proto-Oncogene Proteins c-myc/biosynthesis , Animals , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacology , Apoptosis/drug effects , Cell Adhesion , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Drug Carriers/chemistry , Female , Gangliosides/immunology , Humans , Lipids/chemistry , Liposomes , Melanoma, Experimental/pathology , Mice , Mice, Nude , Neoplasm Transplantation , Oligodeoxyribonucleotides, Antisense/administration & dosage , Oligodeoxyribonucleotides, Antisense/pharmacology
12.
Clin Cancer Res ; 11(9): 3567-73, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15867261

ABSTRACT

Some formulations of liposomal doxorubicin with intermediate rates of drug release have shown increased levels of toxicity in mice. Because antibody-mediated targeting of liposomal drugs influences the pharmacokinetics, mechanism of uptake, and selectivity of the associated drugs, we hypothesized that anti-CD19-mediated targeting of liposomal doxorubicin might moderate the toxicity of the problem formulations. Phosphatidylcholine/cholesterol liposomal formulations of doxorubicin having faster, intermediate, and slower drug release rates were prepared by altering the fatty acyl chain length or degree of saturation of the phosphatidylcholine component. Pharmacokinetic and biodistribution studies and in vivo drug release rates were determined in mice using liposomes dual labeled with [3H]cholesteryl hexadecylether and [14C]doxorubicin. Therapeutic studies were done in xenograft models of human B lymphoma (Namalwa cells). The rate of clearance of the liposomal lipid was similar for all formulations (average t1/2, 18 hours), but the rate of clearance of doxorubicin was dependent on the release rate of the formulation (t1/2, 2-315 hours). Liposomes with the slowest drug release rates showed no toxicity and exhibited therapeutic activity that was superior to the other formulations when targeted with anti-CD19; liposomes with the most rapid drug release rates also showed no toxicity but showed little therapeutic effect even when targeted. Liposomes with intermediate drug release rates exhibited varying degrees of toxicity. The toxicities could be reduced and even overcome by targeting with anti-CD19 antibodies. For these formulations, therapeutic effects were intermediate between those found for liposomes with the fastest and slowest drug release rates.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antigens, CD19/immunology , Doxorubicin/therapeutic use , Lymphoma, B-Cell/drug therapy , Animals , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacokinetics , Antibodies, Monoclonal/chemistry , Area Under Curve , Cell Line, Tumor , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Drug Delivery Systems/methods , Female , Humans , Liposomes/chemistry , Lymphoma, B-Cell/pathology , Mice , Mice, SCID , Phospholipids/chemistry , Survival Analysis , Tissue Distribution , Treatment Outcome , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...