Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1408272, 2024.
Article in English | MEDLINE | ID: mdl-38855467

ABSTRACT

Soil fungi play a critical role in the biogeochemical cycles of forest ecosystems. Larix gmelinii is a strong and important timber tree species, which forms close associations with a wide range of soil fungi. However, the temporal-spatial disparity effects on the assembly of soil fungal communities in L. gmelinii forests are poorly understood. To address these questions, a total of 120 samples, including 60 bulk soil and 60 root samples, were collected from Aershan and Genhe in July (summer) and October (autumn)2021. We obtained 7,788 operational taxonomic units (OTUs) after merging, filtering, and rarefying using high-throughput sequencing. The dominant phyla are Basidiomycota, Ascomycota, Mortierellomycota, and Mucoromycota. There were 13 dominant families, among which the families with average relative abundance more than 5% included Thelephoraceae, Mortierellaceae, Archaeorhizomycoaceae, and Inocybaceae. In the functional guilds, symbiotrophic fungi had a relative advantage in the identified functions, and the relative abundances of pathotrophic and saprotrophic fungi varied significantly between sites. There were 12 families differentially expressed across compartments, 10 families differentially expressed between seasons, and 69 families were differentially expressed between sites. The variation in alpha diversity in the bulk soil was greater than that in the rhizosphere soil. Among the three parts (compartment, season, and site), the site had a crucial effect on the beta diversity of the fungal community. Deterministic processes dominated fungal community assembly in Genhe, whereas stochastic processes dominated in Aershan. Soil physicochemical properties and climatic factors significantly affected fungal community structure, among which soil total nitrogen and pH had the greatest effect. This study highlights that spatial variations play a vital role in the structure and assembly of soil fungal communities in L. gmelinii forests, which is of great significance for us in maintaining the health of the forests.

2.
Microorganisms ; 12(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38792806

ABSTRACT

Revealing the biogeography and community assembly mechanisms of soil microorganisms is crucial in comprehending the diversity and maintenance of Pinus sylvestris var. mongolica forests. Here, we used high-throughput sequencing techniques and null model analysis to explore the distribution patterns and assembly processes of abundant, rare, and total fungal communities in P. sylvestris var. mongolica forests based on a large-scale soil survey across northern China. Compared to the abundant and total taxa, the diversity and composition of rare taxa were found to be more strongly influenced by regional changes and environmental factors. At the level of class, abundant and total taxa were dominated by Agaricomycetes and Leotiomycetes, while Agaricomycetes and Sordariomycetes were dominant in the rare taxa. In the functional guilds, symbiotrophic fungi were advantaged in the abundant and total taxa, and saprotrophic fungi were advantaged in the rare taxa. The null model revealed that the abundant, rare, and total taxa were mainly governed by stochastic processes. However, rare taxa were more influenced by deterministic processes. Precipitation and temperature were the key drivers in regulating the balance between stochastic and deterministic processes. This study provides new insights into both the biogeographical patterns and assembly processes of soil fungi in P. sylvestris var. mongolica forests.

3.
Microorganisms ; 12(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38543530

ABSTRACT

Afforestation plays a pivotal role in ecosystem restoration, exemplified by the Saihanba Mechanized Forest Farm, the world's largest planted forest; however, the assembly mechanisms and interactions of soil microbial communities in such forests remain inadequately understood. This study aimed to elucidate the impact of different afforestation tree species, namely Larix gmelinii var. principis-rupprechtii, Picea asperata, and Pinus sylvestris var. mongolica, on soil bacterial diversity and community structure in comparison to grassland. Sixty soil samples were collected at a 20 cm depth, and high-throughput sequencing was employed to identify bacterial communities and assess their interactions with environmental factors. A total of 6528 operational taxonomic units (OTUs) were identified, with Solirubrobacter, Conexibacter, Bacillus, Massilia, Gaiella, Acidibacter, and Vicinamibacter being the dominant genera. Afforestation significantly impacted soil bacterial alpha diversity, with notable influence from key soil chemical properties, including available phosphorus (AP), cation exchange capacity (CEC), and the carbon-to-nitrogen ratio of soil organic matter (SOM-C/N). The Mantel test highlighted pH, the Normalized Difference Vegetation Index (NDVI), and spatial variable (dbMEM) as primary environmental factors influencing dominant bacterial genera. The bacterial community structure demonstrated deterministic homogeneous selection, wherein SOM-C/N emerged as a significant factor influencing the dissimilarity of soil bacterial communities. Furthermore, plantation soils exhibited a more complex network structure than grassland soil, highlighting the crucial role of bacterial communities in vegetation changes and providing valuable insights into their response to environmental factors during the reforestation process.

4.
Heliyon ; 10(3): e25124, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38327407

ABSTRACT

The exposure of Artemisia pollen in the air to humans causes adverse allergenic effects on the respiratory system. However, the relationship between Artemisia pollen counts and meteorological and air quality factors in the arid and semiarid cities of northwest China has not attracted significant attention. Here, we observed the seasonal pollen counts of Artemisia, as well as the main meteorological variables (temperature/T, relative humidity/RH, and wind speed/WS, and ambient air quality factors (PM2.5, PM10, and CO2). This was conducted from May to September 2021 at three sampling sites in Urumqi, Xinjiang. The results showed that Artemisia pollen counts gradually increased from May (121 grains/1000 mm2) to August (563 grains/1000 mm2) and decreased till the end of the sampling period in September (247 grains/1000 mm2). Pearson correlation analysis revealed a significant positive correlation between the variation in Artemisia pollen counts and PM2.5 (R = 0.545, P < 0.01), the average temperature (R = 0.424, P < 0.05), and PM10 (R = 0.466, P < 0.05). Oppositely, a significant negative correlation was observed between the RH (R = 0.503, P < 0.01) and WS (R = 0.653, P < 0.01). Variation partitioning analysis showed that meteorological factors contributed the highest (44 %) to the variation in pollen counts. The study results provide basic information for future case studies on allergenic plant pollen in Urumqi and serve as a reference for the development of sustainable healthy cities in arid regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...