Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 476: 135063, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38954853

ABSTRACT

Ball-milled plastic char supported nano zero-valent iron (nZVI@BMPC) and their application combined with anaerobic sludge for microbial dechlorination of 2,4,6-trichlorophenol (2,4,6-TCP) were investigated. The XRD and FTIR analysis proved composition of zero valent states of iron, and the BET and SEM analysis showed that nZVI was uniformly distributed on the surface of BMPC. Successive addition of 1000 mg/L sodium lactate and nZVI@BMPC enhanced the acclamation of anaerobic sludge and resulted in the degradation of 4-CP within 80 days. The acclimated consortium with nZVI@BMPC completely degraded 2,4,6-TCP into CH4 and CO2, and the key dechlorination route was through 4-CP dechlorinaion and mineralization. The degradation rate of 2,4,6-TCP with nZVI@BMPC was 0.22/d, greater than that without nZVI@BMPC. The dechlorination efficiency was enhanced in the Fe2+/Fe3+ system controlled by nZVI@BMPC and iron-reducing bacteria. Metagenomic analysis result showed that the dominant de-chlorinators were Chloroflexi sp., Desulfovibrio, and Pseudomonas, which could directly degrade 2,4,6-TCP to 4-CP, especially, Chloroflexi bacterium could concurrently be used to mineralize 4-CP. The relative abundance of the functional genes cprA, acoA, acoB, and tfdB increased significantly in the presence of the nZVI@BMPC. This study provides a new strategy can be a good alternative for possible application in groundwater remediation.

2.
J Hazard Mater ; 469: 133901, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38430602

ABSTRACT

Dissolved organic matter (DOM), which is ubiquitously distributed in groundwater, has a crucial role in the fate and reactivity of iron materials. However, there is a lack of direct evidence on how different DOMs interact with nFe/Ni in promoting or inhibiting the dechlorination efficiency of chlorinated aromatic contaminants. By comparing humic acid (HA), fulvic acid (FA), and biochar-derived dissolved organic matter (BDOM) at different pyrolysis temperatures, we first demonstrated that the dechlorination effect of nFe/Ni on 2,4-dichlorophenol (2,4-DCP) depended on the nature of DOMs and their adsorption on nFe/Ni. HA showed an enhancing effect on the dechlorination of 2,4-DCP by nFe/Ni, while the inhibition effect of other DOMs resulted in the following dechlorination order: BDOM300 ≈FA>BDOM700 ≈BDOM500. The C2 component with higher aromaticity and molecular weight promoted the corrosion of nFe/Ni and the production of reactive hydrogen atoms (H*). The effects of different DOMs on nFe/Ni include that (1) HA accelerates the corrosion and H* production of nFe/Ni, (2) FA and BDOM300 enhance the corrosion but inhibit H* production, and (3) Both nFe/Ni corrosion and H* formation are suppressed by BDOM500/BDOM700. Therefore, this study will provide a reference for understanding the nature of DOM-nFe/Ni interaction and improving the catalytic activity of nFe/Ni when different DOMs coexist in practical applications.

3.
J Hazard Mater ; 458: 131881, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37379603

ABSTRACT

The integration of iron-based materials and anaerobic microbial consortia has been extensively studied owing to its potential to enhance pollutant degradation. However, few studies have compared how different iron materials enhance the dechlorination of chlorophenols in coupled microbial systems. This study systematically compared the combined performances of microbial community (MC) and iron materials (Fe0/FeS2 +MC, S-nZVI+MC, n-ZVI+MC, and nFe/Ni+MC) for the dechlorination of 2,4-dichlorophenol (DCP) as one representative of chlorophenols. DCP dechlorination rate was significantly higher in Fe0/FeS2 +MC and S-nZVI+MC (1.92 and 1.67 times, with no significant difference between two groups) than in nZVI+MC and nFe/Ni+MC (1.29 and 1.25 times, with no significant difference between two groups). Fe0/FeS2 had better performance for the reductive dechlorination process as compared with other three iron-based materials via the consumption of any trace amount of oxygen in anoxic condition and accelerated electron transfer. On the other hand, nFe/Ni could induce different dechlorinating bacteria as compared to other iron materials. The enhanced microbial dechlorination was mainly due to some putative dechlorinating bacteria (Pseudomonas, Azotobacter, Propionibacterium), and due to improved electron transfer of sulfidated iron particles. Therefore, Fe0/FeS2 as a biocompatible as well as low-cost sulfidated material can be a good alternative for possible engineering applications in groundwater remediation.


Subject(s)
Chlorophenols , Water Pollutants, Chemical , Anaerobiosis , Iron , Chlorophenols/metabolism , Biodegradation, Environmental , Water Purification/methods
4.
Sci Total Environ ; 885: 163740, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37146832

ABSTRACT

1The combination of carbonaceous materials and microbial degradation is an attractive measure in improving the removal efficiency of organic pollutants in water environment. In this study, the anaerobic dechlorination in a coupled system of ball-milled plastic chars (BMPCs) and the microbial consortium were investigated. The anaerobic microorganism cultured from raw sludge (CAM) contributed to the dechlorination of the 2,4,6-trichlorophenol (2,4,6-TCP) into 4-chlorophenol (4-CP) as the final product via ortho-dechlorination in all testing groups. The dechlorination rate was accelerated in different BMBC plus CAM groups than that in only CAM group (0.048 d-1), of which, it was greater in BMPC-500 plus CAM group (0.375 d-1) than that in BMPC-700 plus CAM group (0.171 d-1). The electron exchange capacity (EEC) of BMPCs decreased with the increase of pyrolysis temperature (0.053 mmol e-/g for BMPC-500 and 0.037 mmol e-/g for BMPC-700), which directly affected anaerobic dechlorination. Direct interspecies electron transfer (DIET) of BMPCs also boosted the biogas yield by 1.5 times compared to that without BMPCs. Microbial community analysis illustrated that BMPCs helped to enrich the putative dechlorinating bacteria. The abundance of Clostridium_aenus_stricto_12, as a dominant dechlorinator, significantly increased from 0.02 % to 11.3 % (without BMPCs), 39.76 % (BMPC-500) and 9.3 % (BMPC-700), and followed by, Prevotella and Megaspheara, which was reported to take part in anaerobic dechlorination and digestion as H2 producers, also increased in the presence of BMPC. This study contributes to the realization of 2,4,6-TCP in-situ reduction technology and provides a scientific reference for anaerobic dechlorination by cultured anaerobes combined with BMPCs.


Subject(s)
Bacteria, Anaerobic , Electrons , Anaerobiosis , Bacteria, Anaerobic/metabolism , Water/metabolism , Biodegradation, Environmental
5.
Environ Sci Pollut Res Int ; 29(51): 77685-77697, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35680752

ABSTRACT

Ball-milled plastic char (BMPC) was manufactured by ball-milling of native plastic char (PC) that was synthesized via slow pyrolysis of polyethylene terephthalate (PET) water bottle waste, and its adsorption characteristics of aqueous phenanthrene (PHE), phenol, and 2,4,6-trichlorophenol (2,4,6-TCP) and its possible mechanisms were investigated. With the increase of PC pyrolysis temperature, the specific surface area of BMPC increased obviously, forming larger functional groups compared to PC. Boehm titration showed that total acidic groups of BMPC decreased significantly with the increase of pyrolysis temperature. The sorption kinetics of three adsorbates was adequately simulated by pseudo-second-order model (R2 > 0.99). Langmuir model fitted well the adsorption isotherms of PHE and phenol, while Freundlich model simulated the adsorption isotherm of 2,4,6-TCP better. The adsorption amount of PHE, phenol, and 2,4,6-TCP increased significantly as the pyrolysis temperature increased. The maximum BMPC adsorption capacity reached 21.9 mg·g-1 (for PHE), 106 mg·g-1 (for phenol), and 303 mg·g-1 (for 2,4,6-TCP) at 25 °C in aqueous solution. FTIR analysis suggested that surface sorption-based π-π interaction was a dominant mechanism of PHE adsorption; meanwhile, H-bonding between O-containing groups on BMPC and hydroxyl groups of adsorbates was responsible for phenol and 2,4,6-TCP removal. This paper shows that BMPC can be used as adsorbent for treating aromatic compounds in aqueous environment and has an economic worth of application.


Subject(s)
Environmental Pollutants , Phenanthrenes , Water Pollutants, Chemical , Adsorption , Plastics , Polyethylene Terephthalates , Charcoal , Water Pollutants, Chemical/analysis , Kinetics , Phenol , Phenols
SELECTION OF CITATIONS
SEARCH DETAIL
...