Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(50): 59025-59036, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38084630

ABSTRACT

The production of freestanding membranes using two-dimensional (2D) materials often involves techniques such as van der Waals (vdW) epitaxy, quasi-vdW epitaxy, and remote epitaxy. However, a challenge arises when attempting to manufacture freestanding GaN by using these 2D-material-assisted growth techniques. The issue lies in securing stability, as high-temperature growth conditions under metal-organic chemical vapor deposition (MOCVD) can cause damage to the 2D materials due to GaN decomposition of the substrate. Even when GaN is successfully grown using this method, damage to the 2D material leads to direct bonding with the substrate, making the exfoliation of the grown GaN nearly impossible. This study introduces an approach for GaN growth and exfoliation on 2D material/GaN templates. First, graphene and hexagonal boron nitride (h-BN) were transferred onto the GaN template, creating stable conditions under high temperatures and various gases in MOCVD. GaN was grown in a two-step process at 750 and 900 °C, ensuring exfoliation in cases where the 2D materials remained intact. Essentially, while it is challenging to grow GaN on 2D material/GaN using only MOCVD, this study demonstrates that with effective protection of the 2D material, the grown GaN can endure high temperatures and still be exfoliated. Furthermore, these results support that vdW epitaxy and remote epitaxy principle are not only possible with specific equipment but also applicable generally.

2.
ACS Nano ; 17(12): 11739-11748, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37279113

ABSTRACT

Remote epitaxy is a promising technology that has recently attracted considerable attention, which enables the growth of thin films that copy the crystallographic characteristics of the substrate through two-dimensional material interlayers. The grown films can be exfoliated to form freestanding membranes, although it is often challenging to apply this technique if the substrate materials are prone to damage under harsh epitaxy conditions. For example, remote epitaxy of GaN thin films on graphene/GaN templates has not been achieved by a standard metal-organic chemical vapor deposition (MOCVD) method due to such damages. Here, we report GaN remote heteroepitaxy on graphene/AlN templates by MOCVD and investigate the influence of surface pits in AlN on the growth and exfoliation of GaN thin films. We first show the thermal stability of graphene before GaN growth, based on which two-step growth of GaN on graphene/AlN is developed. The GaN samples are successfully exfoliated after the first step of the growth at 750 °C, whereas the exfoliation failed after the second step at 1050 °C. In-depth analysis confirms that the pits in AlN templates lead to the degradation of graphene near the area and thus the alteration of growth modes and the failure of exfoliation. These results exemplify the importance of chemical and topographic properties of growth templates for successful remote epitaxy. It is one of the key factors for III-nitride-based remote epitaxy, and these results are expected to be of great help in realizing complete remote epitaxy using only MOCVD.

3.
Small ; 19(22): e2207966, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36861366

ABSTRACT

Herein, a novel combination of Mg- and Ga-co-doped ZnO (MGZO)/Li-doped graphene oxide (LGO) transparent electrode (TE)/electron-transporting layer (ETL) has been applied for the first time in Cu2 ZnSn(S,Se)4 (CZTSSe) thin-film solar cells (TFSCs). MGZO has a wide optical spectrum with high transmittance compared to that with conventional Al-doped ZnO (AZO), enabling additional photon harvesting, and has a low electrical resistance that increases electron collection rate. These excellent optoelectronic properties significantly improved the short-circuit current density and fill factor of the TFSCs. Additionally, the solution-processable alternative LGO ETL prevented plasma-induced damage to chemical bath deposited cadmium sulfide (CdS) buffer, thereby enabling the maintenance of high-quality junctions using a thin CdS buffer layer (≈30 nm). Interfacial engineering with LGO improved the Voc of the CZTSSe TFSCs from 466 to 502 mV. Furthermore, the tunable work function obtained through Li doping generated a more favorable band offset in CdS/LGO/MGZO interfaces, thereby, improving the electron collection. The MGZO/LGO TE/ETL combination achieved a power conversion efficiency of 10.67%, which is considerably higher than that of conventional AZO/intrinsic ZnO (8.33%).

4.
Adv Sci (Weinh) ; 7(21): 1903085, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33173721

ABSTRACT

It is well-known that the alkali doping of polycrystalline Cu2ZnSn(S,Se)4 (CZTSSe) and Cu(In,Ga)(Se,S)2 has a beneficial influence on the device performance and there are various hypotheses about the principles of performance improvement. This work clearly explains the effect of Na doping on the fill factor (FF) rather than on all of the solar cell parameters (open-circuit voltage, FF, and sometimes short circuit current) for overall performance improvement. When doping is optimized, the fabricated device shows sufficient built-in potential and selects a better carrier transport path by the high potential difference between the intragrains and the grain boundaries. On the other hand, when doping is excessive, the device shows low contact potential difference and FF and selects a worse carrier transport path even though the built-in potential becomes stronger. The fabricated CZTSSe solar cell on a flexible metal foil optimized with a 25 nm thick NaF doping layer achieves an FF of 62.63%, thereby clearly showing the enhancing effect of Na doping.

5.
Microbiome ; 7(1): 81, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31153386

ABSTRACT

Following publication of the original article [1], the authors reported an error in Fig. 2. The correct figure is shown below.

6.
Microbiome ; 7(1): 67, 2019 04 25.
Article in English | MEDLINE | ID: mdl-31027515

ABSTRACT

BACKGROUND: Originating from poultry, particularly chickens, Campylobacter jejuni is the leading foodborne pathogen worldwide and a major cause of campylobacteriosis. Isolating C. jejuni is difficult due to its specific growth requirements, the presence of viable but non-culturable bacteria, and because it is often masked by competing flora. Currently, there is no optimized method for isolating C. jejuni from chicken feces. Here, we evaluated the method for isolating C. jejuni from chicken feces using culture-independent sequence-based metagenomics and culture-dependent tools. Further, we assessed changes in microbial communities during microbe isolation to determine how the process can be improved. RESULTS: Fourteen different variations of C. jejuni isolation procedures were applied to all 35 chicken fecal samples. These variations included using different enrichment broths (without enrichment or enrichment in Bolton or Preston broth), different ratios of sample-to-enrichment broth (1:101, 1:102, and 1:103), and different selective agars (modified charcoal-cefoperazone-deoxycholate agar (mCCDA) or Preston agar). Enrichment during isolation of C. jejuni was evaluated on the basis of microbial diversity and taxonomic composition using metagenomics tools. The effect of selective media was evaluated using a combination of metagenomics and culture-dependent tools. Microbial diversity significantly decreased during the enrichment process, regardless of the type of enrichment broth, with the most significant decrease observed at a feces-to-broth ratio of 1:103. Particularly, in 103-Preston broth, the relative abundance of Campylobacter increased, while extended-spectrum beta-lactamase-producing Escherichia coli, which interfere with Campylobacter isolation, decreased. Metagenomics results were validated by quantitative PCR and culture-dependent analysis. Additionally, selective media affected the isolation results, although microbes with high relative abundance during enrichment were also frequently isolated using culture-dependent methods. Significantly more C. jejuni was isolated from mCCDA than from Preston agar enriched in 103 Preston broth. CONCLUSIONS: Enrichment in Preston broth at a ratio of 1:103 followed by spreading onto mCCDA was the most effective method for isolating C. jejuni. This is the first study to apply metagenomics to evaluate a method for isolating a targeted microbe, C. jejuni, from chicken feces, a source with high microbial contamination. Thus, metagenomics can be applied to improve methods for isolating bacteria that are difficult to separate.


Subject(s)
Campylobacter jejuni/genetics , Campylobacter jejuni/isolation & purification , Chickens/microbiology , Feces/microbiology , Microbiota , Animals , Bacteriological Techniques , Culture Media/chemistry , Metagenomics
7.
Front Microbiol ; 10: 3066, 2019.
Article in English | MEDLINE | ID: mdl-31993041

ABSTRACT

Campylobacter jejuni is one of the most common zoonotic pathogens worldwide. Although the main sources of human C. jejuni infection are livestock, wildlife can also affect C. jejuni transmission in humans. However, it remains unclear whether wild mice harbor C. jejuni and are involved in the "environment-wildlife-livestock-human" transmission cycle of C. jejuni in humans. Here, we characterized C. jejuni from wild mice and identified genetic traces of wild mouse-derived C. jejuni in other hosts using a traditional approach, along with comparative genomics. We captured 115 wild mice (49 Mus musculus and 66 Micromys minutus) without any clinical symptoms from 22 sesame fields in Korea over 2 years. Among them, M. minutus were typically caught in remote areas of human houses and C. jejuni was solely isolated from M. minutus (42/66, 63.6%). We identified a single clone (MLST ST-8388) in all 42 C. jejuni isolates, which had not been previously reported, and all isolates had the same virulence/survival-factor profile, except for the plasmid-mediated virB11 gene. No isolates exhibited antibiotic resistance, either in phenotypic and genetic terms. Comparative-genomic analysis and MST revealed that C. jejuni derived from M. minutus (strain SCJK2) was not genetically related to those derived from other sources (registered in the NCBI genome database and PubMLST database). Therefore, we hypothesize that C. jejuni from M. minutus is a normal component of the gut flora following adaptation to the gastro-intestinal tract. Furthermore, M. minutus-derived C. jejuni had different ancestral lineages from those derived from other sources, and there was a low chance of C. jejuni transmission from M. minutus to humans/livestock because of their habitat. In conclusion, M. minutus may be a potential reservoir for a novel C. jejuni, which is genetically different from those of other sources, but may not be involved in the transmission of C. jejuni to other hosts, including humans and livestock. This study could form the basis for further studies focused on understanding the transmission cycle of C. jejuni, as well as other zoonotic pathogens originating from wild mice.

8.
Front Microbiol ; 9: 3136, 2018.
Article in English | MEDLINE | ID: mdl-30619204

ABSTRACT

Campylobacter jejuni is a major foodborne pathogen that is increasingly found worldwide and that is transmitted to humans through meat or dairy products. A detailed understanding of the prevalence and characteristics of C. jejuni in dairy cattle farms, which are likely to become sources of contamination, is imperative and is currently lacking. In this study, a total of 295 dairy cattle farm samples from 15 farms (24 visits) in Korea were collected. C. jejuni prevalence at the farm level was 60% (9/15) and at the animal level was 23.8% (68/266). Using the multivariable generalized estimating equation (GEE) model based on farm-environmental factors, we estimated that a high density of cattle and average environmental temperature (7 days prior to sampling) below 24°C affects the presence and survival of C. jejuni in the farm environment. Cattle isolates, together with C. jejuni from other sources (chicken and human), were genetically characterized based on analysis of 10 virulence and survival genes. A total of 19 virulence profile types were identified, with type 01 carrying eight genes (all except hcp and virB11) being the most prevalent. The prevalence of virB11 and hcp was significantly higher in isolates from cattle than in those from other sources (p < 0.05). Multilocus sequence typing (MLST) of C. jejuni isolates from three different sources mainly clustered in the CC-21 and CC-48. Within the CC-21 and CC-48 clusters, cattle isolates shared an indistinguishable pattern with human isolates according to pulsed-field gel electrophoresis (PFGE) and flaA-restriction fragment length polymorphism (RFLP) typing. This suggests that CC-21 and CC-48 C. jejuni from dairy cattle are genetically related to clinical campylobacteriosis isolates. In conclusion, the farm environment influences the presence and survival of C. jejuni, which may play an important role in cycles of cattle re-infection, and dairy cattle represent potential reservoirs of human campylobacteriosis. Thus, environmental management practices could be implemented on cattle farms to reduce the shedding of C. jejuni from cattle, subsequently reducing the potential risk of the spread of cattle-derived C. jejuni to humans through the food chain.

9.
Sci Rep ; 7(1): 10333, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28871141

ABSTRACT

In general, to realize full color, inorganic light-emitting diodes (LEDs) are diced from respective red-green-blue (RGB) wafers consisting of inorganic crystalline semiconductors. Although this conventional method can realize full color, it is limited when applied to microdisplays requiring high resolution. Designing a structure emitting various colors by integrating both AlGaInP-based and InGaN-based LEDs onto one substrate could be a solution to achieve full color with high resolution. Herein, we introduce adhesive bonding and a chemical wet etching process to monolithically integrate two materials with different bandgap energies for green and red light emission. We successfully transferred AlGaInP-based red LED film onto InGaN-based green LEDs without any cracks or void areas and then separated the green and red subpixel LEDs in a lateral direction; the dual color LEDs integrated by the bonding technique were tunable from the green to red color regions (530-630 nm) as intended. In addition, we studied vertically stacked subpixel LEDs by deeply analyzing their light absorption and the interaction between the top and bottom pixels to achieve ultra-high resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...