Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(28): 14144-14153, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31235597

ABSTRACT

Epstein-Barr virus (EBV) induces histone modifications to regulate signaling pathways involved in EBV-driven tumorigenesis. To date, the regulatory mechanisms involved are poorly understood. In this study, we show that EBV infection of epithelial cells is associated with aberrant histone modification; specifically, aberrant histone bivalent switches by reducing the transcriptional activation histone mark (H3K4me3) and enhancing the suppressive mark (H3K27me3) at the promoter regions of a panel of DNA damage repair members in immortalized nasopharyngeal epithelial (NPE) cells. Sixteen DNA damage repair family members in base excision repair (BER), homologous recombination, nonhomologous end-joining, and mismatch repair (MMR) pathways showed aberrant histone bivalent switches. Among this panel of DNA repair members, MLH1, involved in MMR, was significantly down-regulated in EBV-infected NPE cells through aberrant histone bivalent switches in a promoter hypermethylation-independent manner. Functionally, expression of MLH1 correlated closely with cisplatin sensitivity both in vitro and in vivo. Moreover, seven BER members with aberrant histone bivalent switches in the EBV-positive NPE cell lines were significantly enriched in pathway analysis in a promoter hypermethylation-independent manner. This observation is further validated by their down-regulation in EBV-infected NPE cells. The in vitro comet and apurinic/apyrimidinic site assays further confirmed that EBV-infected NPE cells showed reduced DNA damage repair responsiveness. These findings suggest the importance of EBV-associated aberrant histone bivalent switch in host cells in subsequent suppression of DNA damage repair genes in a methylation-independent manner.


Subject(s)
Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , Histone Code/genetics , Histones/genetics , CpG Islands/genetics , DNA Damage/genetics , DNA Methylation/genetics , DNA Mismatch Repair/genetics , DNA Repair/genetics , Epithelial Cells/metabolism , Epithelial Cells/virology , Epstein-Barr Virus Infections/pathology , Epstein-Barr Virus Infections/virology , Gene Expression Regulation/genetics , Herpesvirus 4, Human/pathogenicity , Homologous Recombination/genetics , Humans , MutL Protein Homolog 1/genetics , Nasopharynx/growth & development , Nasopharynx/pathology , Nasopharynx/virology , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...