Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biotechnol ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302682

ABSTRACT

This study focuses on the prevalence of Pseudomonas aeruginosa in various medical specimens. In addition, the investigates of this research shows the genetic analysis of pathogen-resistant isolates and chemical modifications to ciprofloxacin. A total of 225 specimens from men and women aged 30 to 60 were carefully collected and examined, including samples from wound, burn, urine, sputum, and ear samples. The data were obtained from AL Muthanna hospitals. PCR-RFLP and gene expression analysis were used to identify resistant strains and explore the genetic basis of antibiotic resistance. A ciprofloxacin derivative was synthesized and confirmed through FT-IR, 1H-NMR, and mass spectroscopy techniques then it was tested as antibacterial agent. Also, molecular docking study was conducted to predict the mechanism of action for the synthesized derivative. The results demonstrated that wound samples had the highest positive rate (33.7%) of P. aeruginosa isolates. The PCR-RFLP testing correlated ciprofloxacin resistance with gyrA gene mutation. Gene expression analysis revealed significant changes in the gyrA gene expression in comparison to the reference rpsL gene subsequent to exposure to the synthesized derivative. Furthermore, the molecular docking investigation illustrated the strategic positioning of the ciprofloxacin derivative within the DNA-binding site of the gyrA enzyme. The examination of genetic expression patterns manifested diverse effects attributed to the CIP derivative on P. aeruginosa, thus portraying it as a viable candidate in the quest for the development of novel antimicrobial agents. Ciprofloxacin derivative may offer new antimicrobial therapeutic options for treating Pseudomonas aeruginosa infections in wound specimens, addressing resistance and gyrA gene mutations.

2.
Microbiol Resour Announc ; 11(11): e0097722, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36250864

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant was first reported in India. Thereafter, the Delta variant became the most prevalent variant globally. Here, we report the complete genome sequence of an early imported case of a SARS-CoV-2 B.1.617.2 AY.122 strain in Iraq. The strain was obtained from a flight passenger from India to Iraq on 20 April 2021.

3.
PLoS One ; 17(5): e0267295, 2022.
Article in English | MEDLINE | ID: mdl-35617193

ABSTRACT

Since the first reported case of coronavirus disease 2019 (COVID-19) in China, SARS-CoV-2 has been spreading worldwide. Genomic surveillance of SARS-CoV-2 has had a critical role in tracking the emergence, introduction, and spread of new variants, which may affect transmissibility, pathogenicity, and escape from infection or vaccine-induced immunity. As anticipated, the rapid increase in COVID-19 infections in Iraq in February 2021 is due to the introduction of variants of concern during the second wave of the COVID-19 pandemic. To understand the molecular epidemiology of SARS-CoV-2 during the second wave in Iraq (2021), we sequenced 76 complete SARS-CoV-2 genomes using NGS technology and identified genomic mutations and proportions of circulating variants among these. Also, we performed an in silico study to predict the effect of the truncation of NS7a protein (ORF7a) on its function. We detected nine different lineages of SARS-CoV-2. The B.1.1.7 lineage was predominant (80.20%) from February to May 2021, while only one B.1.351 strain was detected. Interestingly, the phylogenetic analysis showed that multiple strains of the B.1.1.7 lineage clustered closely with those from European countries. A notable frequency (43.33%) of stop codon mutation (NS7a Q62stop) was detected among the B.1.1.7 lineage sequences. In silico analysis of NS7a with Q62stop found that this stop codon had no considerable effect on the function of NS7a. This work provides molecular epidemiological insights into the spread variants of SARS-CoV-2 in Iraq, which are most likely imported from Europe.


Subject(s)
COVID-19 , SARS-CoV-2 , Viral Proteins/genetics , COVID-19/epidemiology , Codon, Nonsense , Codon, Terminator , Humans , Iraq/epidemiology , Mutation , Pandemics , Phylogeny , Prevalence , SARS-CoV-2/genetics
4.
J Biomol Struct Dyn ; 40(11): 4879-4892, 2022 07.
Article in English | MEDLINE | ID: mdl-33357040

ABSTRACT

The World Health Organization has classified the COVID-19 outbreak a pandemic which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and declared it a global health emergency. Repurposing drugs with minimum side effects are one approach to quickly respond in attempt to prevent the spread of COVID-19. SARS-CoV-2 encodes several RNA processing enzymes that are unusual and unique for single-stranded RNA viruses, including Nsp15, a hexameric endoribonuclease that discriminatory cleaves immediately 3' of uridines. The structure of SARS-CoV-2 Nsp15 is reported to be homologous to that of the Nsp15 endoribonucleases of SARS-CoV and MERS-CoV, but it exhibits differences that may contribute to the greater virulence of SARS-CoV-2. This study aimed to identify drugs that targeted SARS-COV-2 Nsp15 using a molecular docking-based virtual screening of a library containing 10,000 approved and experimental drugs. The molecular docking results revealed 19 medications that demonstrated a good ability to inhibit Nsp15. Among all the candidated 19 drugs only five FDA approved drugs were used for further investigation by molecular dynamics simulation, the stability of Nsp15-ligand system was evaluated by calculating the RMSD, RMSF, radius of gyration and hydrogen bond profile. Furthermore, MM-PBSA method was employed to validate the binding affinity. According to the obtained results of MD, the complex of Olaparib was showed more stability and lower binding free energy than the control inhibitor during MD simulation time. Finally, we suggest that Olaparib is a potential drug for treating patients infected with SARS-CoV-2 and provide insight into the host immune response to viral RNA.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , Endoribonucleases , SARS-CoV-2 , Viral Nonstructural Proteins , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Endoribonucleases/antagonists & inhibitors , Endoribonucleases/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , RNA, Viral , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , COVID-19 Drug Treatment
5.
Microbiol Resour Announc ; 10(4)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33509990

ABSTRACT

The coding-complete genome sequence of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain isolated from an Iraqi patient was sequenced for the first-time using Illumina MiSeq technology. There was a D614G mutation in the spike protein-coding sequence. This report is valuable for better understanding the spread of the virus in Iraq.

SELECTION OF CITATIONS
SEARCH DETAIL
...