Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(23): 16616-16624, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38807500

ABSTRACT

Nitric acid dissociation in water is studied as a function of concentration, employing experimental techniques (1H NMR spectroscopy and calorimetry), quantum chemical methods (B3LYP and PBE functionals for molecular clusters) and molecular dynamics simulations (the PBE-D3 functional for solutions under periodic boundary conditions). The extent of dissociation, via proton transfer to a neighboring water molecule, as a function of concentration is studied computationally for molecular nitric acid clusters HNO3(H2O)x (x = 1-8), as well as periodic liquids (HNO3 mole fractions of 0.19 and 0.5, simulated at T = 300 K and 450 K). Despite the simple nature of these structural models, their computed and simulated average 1H chemical shifts compare well with the experimental measurements in this study. Finally, the measured and calculated chemical shifts have shown reasonable relationships with the enthalpy change upon mixing of this binary complex.

2.
J Chem Phys ; 153(22): 224303, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33317306

ABSTRACT

Hydrated calcium ion clusters have received considerable attention due to their essential role in biological processes such as bone development, hormone regulation, blood coagulation, and neuronal signaling. To better understand the biological role of the cation, the interactions between the Ca2+ ions and water molecules have been frequently investigated. However, a quantitative measure for the intrinsic Ca-O (ion-solvent) and intermolecular hydrogen bond (solvent-solvent) interactions has been missing so far. Here, we report a topological electron density analysis and a natural population analysis to analyze the nature of these interactions for a set of 14 hydrated calcium clusters via local mode stretching force constants obtained at the ωB97X-D/6-311++G(d,p) level of theory. The results revealed that the strength of inner Ca-O interactions for Ca(H2O)n 2+ (n = 1-8) clusters correlates with the electron density. The application of a second hydration shell to Ca(H2O)n 2+ (n = 6-8) clusters resulted in stronger Ca-O interactions where a larger electron charge transfer between lp(O) of the first hydration shell and the lower valence of Ca prevailed. The strength of the intermolecular hydrogen bonds, formed between the first and second hydration shells, became stronger when the charge transfers between hydrogen bond (HB) donors and HB acceptors were enhanced. From the local mode stretching force constants of implicitly and explicitly solvated Ca2+, we found the six-coordinated cluster to possess the strongest stabilizations, and these results prove that the intrinsic bond strength measures for Ca-O and hydrogen bond interactions form new effective tools to predict the coordination number for the hydrated calcium ion clusters.

3.
J Phys Chem A ; 124(13): 2580-2590, 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32149517

ABSTRACT

The thiol-ene reaction is one of the fundamental reactions in biochemistry and synthetic organic chemistry. In this study, the effect of polar media on the reaction kinetics is taken into account by using the transition state theory; the reactivities of the carbon and sulfur radicals have also been rationalized by using conceptual DFT. The results have shown that the solvents have more impact on hydrogen atom transfer reactions and the chain transfer rate constant, kCT, can be increased by using nonpolar solvents, while propagation reactions are less sensitive to media. Similarly, the kP/kCT ratio can be manipulated by changing the environment in order to obtain tailor-made polymers. Regarding the DFT descriptors, the local and global electrophilicity indices are well correlated with the propagation rate constant kP, whereas the global electrophilicity index is associated with the chain transfer rate constant kCT. Overall, electrophilicity indices can be used with confidence to predict the kinetics of thiol-ene reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...