Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Rice (N Y) ; 9(1): 24, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27189009

ABSTRACT

BACKGROUND: The development of relatively cheap and high throughput methods of genotyping and phenotyping plants offers the opportunity to explore local germplasm more thoroughly than before and should accelerate the identification of sources of genetic variation suitable for breeding. In this study, 135 Sri Lankan accessions, mostly identified as landraces, for which data was available at the International Rice Research Institute on drought scores were genotyped using a 384 SNP array and assessed for root depth using a newly developed buried herbicide method. Roots of 36 accessions were assessed using hydroponics and 12 using soil-filled rhizotrons to establish if variation in herbicide score could be attributed to root traits. RESULTS: Population structure based on the SNPs using STRUCTURE revealed six groups, being tropical japonica, aus and four indica subpopulations. Three of these indica subpopulations do not seem to be represented in the Rice Diversity Panel I (RDP1) of 372 global rice accessions and appear to represent genetic diversity so far poorly studied by the global scientific community. The herbicide score was highly discriminatory between landraces and correlated very strongly with hydroponic and rhizotron root traits. The mean herbicide score strongly differentiated between landraces according to the province and the latitude from which they were collected. It also differed between subpopulations, being high in indica 2 and tropical japonica and low in indica 1 and aus. Drought scores suggest that indica 2 is more drought resistant than the other groups. Correlations indicate that those landraces with high herbicide scores are more drought resistant in the vegetative stage. The landrace Niyan Wee, whose name in Sinhalese means "drought rice" belongs to the indica 2 subgroup, has high herbicide scores and deep roots. CONCLUSIONS: Niyan Wee and other cultivars within the indica 2 subgroup should be a valuable source of breeding for drought resistance at least partly because of their superior root traits, not normally associated with the indica rice cultivars.

2.
PLoS One ; 10(4): e0124127, 2015.
Article in English | MEDLINE | ID: mdl-25909711

ABSTRACT

The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers) was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E) component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7-40.7 Mb) and on chromosome 8 (20.3-21.9 Mb). Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis) with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions.


Subject(s)
Oryza/growth & development , Oryza/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Droughts , Environment , Genetic Association Studies , Genome, Plant , Plant Roots/genetics , Plant Roots/growth & development , Polymorphism, Single Nucleotide , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...