Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(5): e17307, 2024 May.
Article in English | MEDLINE | ID: mdl-38709196

ABSTRACT

Climate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest-forming tree species often mast, i.e. reproduce through synchronised year-to-year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan-European species. Here, we analysed 50 long-term datasets of population-level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site-specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population-level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.


Subject(s)
Climate Change , Fagus , Seasons , Temperature , Fagus/growth & development , Fagus/physiology , Europe , Seeds/growth & development , Seeds/physiology , Reproduction , Trees/growth & development , Trees/physiology , Pollination
2.
Sci Total Environ ; 919: 170726, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38331275

ABSTRACT

The fraction of photosynthetically assimilated carbon that trees allocate to long-lasting woody biomass pools (biomass production efficiency - BPE), is a key metric of the forest carbon balance. Its apparent simplicity belies the complex interplay between underlying processes of photosynthesis, respiration, litter and fruit production, and tree growth that respond differently to climate variability. Whereas the magnitude of BPE has been routinely quantified in ecological studies, its temporal dynamics and responses to extreme events such as drought remain less well understood. Here, we combine long-term records of aboveground carbon increment (ACI) obtained from tree rings with stand-level gross primary productivity (GPP) from eddy covariance (EC) records to empirically quantify aboveground BPE (= ACI/GPP) and its interannual variability in two European beech forests (Hainich, DE-Hai, Germany; Sorø, DK-Sor, Denmark). We found significant negative correlations between BPE and a daily-resolved drought index at both sites, indicating that woody growth is de-prioritized under water limitation. During identified extreme years, early-season drought reduced same-year BPE by 29 % (Hainich, 2011), 31 % (Sorø, 2006), and 14 % (Sorø, 2013). By contrast, the 2003 late-summer drought resulted in a 17 % reduction of post-drought year BPE at Hainich. Across the entire EC period, the daily-to-seasonal drought response of BPE resembled that of ACI, rather than that of GPP. This indicates that BPE follows sink dynamics more closely than source dynamics, which appear to be decoupled given the distinctive climate response patterns of GPP and ACI. Based on our observations, we caution against estimating the magnitude and variability of the carbon sink in European beech (and likely other temperate forests) based on carbon fluxes alone. We also encourage comparable studies at other long-term EC measurement sites from different ecosystems to further constrain the BPE response to rare climatic events.


Subject(s)
Ecosystem , Fagus , Biomass , Fagus/physiology , Droughts , Forests , Carbon , Climate Change
3.
New Phytol ; 226(1): 111-125, 2020 04.
Article in English | MEDLINE | ID: mdl-31901219

ABSTRACT

Controls on tree growth are key issues in plant physiology. The hypothesis of our study was that the interannual variability of wood and fruit production are primarily controlled directly by weather conditions (sink limitation), while carbon assimilation (source limitation) plays a secondary role. We analyzed the interannual variability of weather conditions, gross primary productivity (GPP) and net primary productivity (NPP) of wood and fruits of an old-growth, unmanaged Fagus sylvatica forest over 14 yr, including six mast years. In a multiple linear regression model, c. 71% of the annual variation in wood-NPP could be explained by mean air temperature in May, precipitation from April to May (positive influence) and fruit-NPP (negative influence). GPP of June to July solely explained c. 42% of the variation in wood-NPP. Fruit-NPP was positively related to summer precipitation 2 yr before (R2  = 0.85), and negatively to precipitation in May (R2  = 0.83) in the fruit years. GPP had no influence on fruit-NPP. Our results suggest a complex system of sink and source limitations to tree growth driven by weather conditions and going beyond a simple carbon-mediated 'trade-off' between regenerative and vegetative growth.


Subject(s)
Fagus , Forests , Carbon , Fagus/growth & development , Seasons , Trees , Weather
4.
Sci Rep ; 6: 28269, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27301671

ABSTRACT

Severe droughts strongly impact photosynthesis (GPP), and satellite imagery has yet to demonstrate its ability to detect drought effects. Especially changes in vegetation functioning when vegetation state remains unaltered (no browning or defoliation) pose a challenge to satellite-derived indicators. We evaluated the performance of different satellite indicators to detect strong drought effects on GPP in a beech forest in France (Hesse), where vegetation state remained largely unaffected while GPP decreased substantially. We compared the results with three additional sites: a Mediterranean holm oak forest (Puéchabon), a temperate beech forest (Hainich), and a semi-arid grassland (Bugacpuszta). In Hesse, a three-year reduction in GPP following drought was detected only by the Enhanced Vegetation Index (EVI). The Photochemical Reflectance Index (PRI) also detected this drought effect, but only after normalization for absorbed light. In Puéchabon normalized PRI outperformed the other indicators, while the short-term drought effect in Hainich was not detected by any tested indicator. In contrast, most indicators, but not PRI, captured the drought effects in Bugacpuszta. Hence, PRI improved detection of drought effects on GPP in forests and we propose that PRI normalized for absorbed light is considered in future algorithms to estimate GPP from space.


Subject(s)
Droughts , Remote Sensing Technology , Forests , France , Photosynthesis
5.
Carbon Balance Manag ; 7(1): 5, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22423646

ABSTRACT

BACKGROUND: No consensus has been reached how to measure the effectiveness of climate change mitigation in the land-use sector and how to prioritize land use accordingly. We used the long-term cumulative and average sectorial C stocks in biomass, soil and products, C stock changes, the substitution of fossil energy and of energy-intensive products, and net present value (NPV) as evaluation criteria for the effectiveness of a hectare of productive land to mitigate climate change and produce economic returns. We evaluated land management options using real-life data of Thuringia, a region representative for central-western European conditions, and input from life cycle assessment, with a carbon-tracking model. We focused on solid biomass use for energy production. RESULTS: In forestry, the traditional timber production was most economically viable and most climate-friendly due to an assumed recycling rate of 80% of wood products for bioenergy. Intensification towards "pure bioenergy production" would reduce the average sectorial C stocks and the C substitution and would turn NPV negative. In the forest conservation (non-use) option, the sectorial C stocks increased by 52% against timber production, which was not compensated by foregone wood products and C substitution. Among the cropland options wheat for food with straw use for energy, whole cereals for energy, and short rotation coppice for bioenergy the latter was most climate-friendly. However, specific subsidies or incentives for perennials would be needed to favour this option. CONCLUSIONS: When using the harvested products as materials prior to energy use there is no climate argument to support intensification by switching from sawn-wood timber production towards energy-wood in forestry systems. A legal framework would be needed to ensure that harvested products are first used for raw materials prior to energy use. Only an effective recycling of biomaterials frees land for long-term sustained C sequestration by conservation. Reuse cascades avoid additional emissions from shifting production or intensification.

6.
SEB Exp Biol Ser ; : 319-30, 2005.
Article in English | MEDLINE | ID: mdl-17633042

ABSTRACT

This study reviews the effects of changes in land use and land management on SOC pools in forest soils. In the 1990s, deforestation remained the most important land-use change in tropical regions (-142 x 10(6) ha per year). In non-tropical regions the forested area increased in developed countries as a result of natural reforestation (+26 x 10(6) ha per year). Deforestation also continued in under-developed countries in temperate regions. Without intensive site preparation, harvest followed by natural regeneration or reforestation has little impact on SOC pools in the mineral topsoil (0-0.3 m). Intensive site preparation results in losses of 6-13% of the initial SOC from the topsoil in the first decades. On average, deforestation followed by conversion to cropland results in SOC losses of 42% (or 0.1-1500 g (C) m(-2)) from the mineral topsoil, whereas conversion to pasture results in gains of 8%. The largest changes in SOC storage occur within the first two decades. After reforestation, SOC accumulation depends on the kind of managed forest established. Under productive deciduous reforestation (excluding eucalypts), SOC in the mineral topsoil accumulates at a rate of 20-50 g (C) m(-2) per year, and SOC pools could recover from cultivation-induced losses within 40 years. Under coniferous reforestation, the rate of accumulation of carbon is highest (95 g (C) m(-2) per year) in the organic layer, which is very susceptible to site preparation practices. In the mineral topsoil, the rate of accumulation is much lower (4 g (C) m(-2) per year), and recovery of the initial SOC pools might take several hundred years. The resulting land-use 'memory effect' has introduced large variation of the SOC pools in contemporary carbon budget studies. Thus, there seems to be a large temporal asymmetry between the period of time over which depletion of SOC occurs and the time needed for recovery of the SOC pools in the mineral soil. This should be taken into account when considering land-use and land-management activities to decrease atmospheric CO2 concentrations over this century.


Subject(s)
Carbon/analysis , Conservation of Natural Resources , Forestry , Greenhouse Effect , Soil/analysis , Trees/physiology , Agriculture , Biomass , Ecosystem , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...