Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37861370

ABSTRACT

The aqueous photolysis of four pharmaceuticals with varying fluorinated functional groups was assessed under neutral, alkaline, advanced oxidation, and advanced reduction conditions with varying light sources. Solar simulator quantum yields were 2.21 × 10-1 mol Ei-1 for enrofloxacin, 9.36 × 10-3 mol Ei-1 for voriconazole, and 1.49 × 10-2 mol Ei-1 for flecainide. Florfenicol direct photolysis was slow, taking 150 h for three degradation half-lives. Bimolecular rate constants between pharmaceuticals and hydroxyl radicals were 109 to 1010 M-1 s-1 . Using a combined quantitative fluorine nuclear magnetic resonance spectroscopy (19 F-NMR) and mass spectrometry approach, fluorine mass balances and photolysis product structures were elucidated. Enrofloxacin formed a variety of short-lived fluorinated intermediates that retained the aryl F motif. Extended photolysis time led to complete aryl F mineralization to fluoride. The aliphatic F moiety on florfenicol was also mineralized to fluoride, but the resulting product was a known antibiotic (thiamphenicol). For voriconazole, the two aryl Fs contributed more to fluoride production compared with the heteroaromatic F, indicating higher stability of the heteroaromatic F motif. The two aliphatic CF3 moieties in the flecainide structure remained intact under all conditions, further supporting the stability of these moieties found in per- and polyfluoroalkyl substances under a variety of conditions. The advanced treatment conditions generating hydroxyl radicals or hydrated electrons accelerated the degradation, but not the defluorination, of flecainide. The combination of 19 F-NMR and mass spectrometry proved powerful in allowing identification of fluorinated products and verifying the functional groups present in the intermediates and products. The results found in the present study will aid in the understanding of which fluorinated functional groups should be incorporated into pharmaceuticals to ensure organofluorine byproducts are not formed in the environment and help determine the water-treatment processes that effectively remove specific pharmaceuticals and more generally fluorinated motifs. Environ Toxicol Chem 2023;00:1-12. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

2.
Anal Chem ; 95(14): 6071-6079, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37000984

ABSTRACT

Accurate temperature measurement via magnetic resonance is valuable for both in vitro and in vivo analysis of local tissue for evaluating disease pathology and medical interventions. 1H MRI-based thermometry is used clinically but is susceptible to error from magnetic field drift and low sensitivity in fatty tissue and requires a reference for absolute temperature determination. As an alternative, perfluorotributylamine (PFTBA), a perfluorocarbon liquid for 19F MRI thermometry, is based on chemical shift responsiveness and approaches the sensitivity of 1H MRI thermometry agents; however, environmental persistence, greenhouse gas concerns, and multiple resonances which can lead to MRI artifacts indicate a need for alternative sensors. Using a 19F NMR-based structure-property study of synthetic organofluorine molecules, this research develops new organofluorine liquids with improved temperature responsiveness, high signal, and reduced nonmagnetically equivalent fluorine resonances. Environmental degradation analysis using reverse-phase HPLC and quantitative 19F NMR demonstrates a rapid degradation profile mediated via the aryl fluorine core of temperature sensors. Our findings show that our lead liquid temperature sensor, DD-1, can be made in high yield in a single step and possesses an improved responsiveness over our prior work and an 83% increase in aqueous thermal responsiveness over PFTBA. Degradation studies indicate robust degradation with half-lives of less than two hours under photolysis conditions for the parent compound and formation of other fluorinated products. The improved performance of DD-1 and its susceptibility to environmental degradation highlight a new lead fluorous liquid for thermometry applications.


Subject(s)
Magnetic Resonance Spectroscopy , Fluorine/chemistry , Thermometry , Magnetic Resonance Spectroscopy/methods , Temperature , Structure-Activity Relationship , Photochemistry/methods
3.
Environ Sci Process Impacts ; 24(12): 2284-2293, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36398693

ABSTRACT

Polypropylene (PP) and polyethylene (PE) are commonly used polyolefins in a variety of applications, which have resulted in their accumulation in the environment. Once in the environment, these polymers undergo various chemical and physical transformations as the result of environmental stressors such as sunlight. While photodegradation has been studied for decades, there are key gaps in knowledge on the phototransformations of polyolefins that occur under aqueous conditions. Therefore, the goal of this study is to characterize the phototransformations of PP and PE in simulated freshwater conditions. Polymer thin films were irradiated with 254 nm and 350 nm UV light in air, ultra-pure water, and solutions of dissolved organic matter (DOM) to simulate natural systems. Irradiated plastics were evaluated for oxidation and chain scission. It was observed using Fourier transform infrared spectroscopy (FTIR) that oxidation in aqueous environments happened at a slower rate compared to oxidations in air. However, photo-oxidation was accelerated in the presence of DOM compared to ultrapure water, with singlet oxygen and hydroxyl radical causing varied amounts of degradation depending on the polymer. The vinyl characteristic, a chain scission product, revealed an increased yield but the reaction rate showed that these photoproducts were more likely to occur when oxidation is less favorable. Compared to naturally weathered samples, lab observed transformations were on par with naturally degraded samples and support the importance of the in-lab measurements. This work quantifies the extent and rate of photodegradation pathways in PP and PE to demonstrate the importance of photodegradation in aquatic systems.


Subject(s)
Water Pollutants, Chemical , Photolysis , Water Pollutants, Chemical/analysis , Fresh Water , Water , Polymers , Polyethylene , Polypropylenes
4.
ACS Environ Au ; 2(3): 242-252, 2022 May 18.
Article in English | MEDLINE | ID: mdl-37102144

ABSTRACT

Fluorine incorporation into organic molecules has increased due to desirable changes in the molecular physiochemical properties. Common fluorine motifs include: aliphatic fluorines and -CF3, or -F containing groups bonded directly onto an aromatic (Ar-CF3 and Ar-F) or heteroaromatic ring. Photolysis of these compounds, either in natural or engineered systems, is a potential source of new fluorinated byproducts. Given the potential persistence and toxicity of fluorinated byproducts, monitoring of product formation during photolysis of various fluorinated motifs is needed. 19F-NMR is a means to detect and quantify these species. Ar-CF3 and Ar-F model compounds (2-, 3-, and 4-(trifluoromethyl)phenol, 2-, 3-, 4-fluorophenol, and 2,6-, 3,5-difluorophenol) were photolyzed under a variety of aqueous conditions: pH 5, pH 7, pH 10, 1 mM H2O2 at pH 7 to form •OH, and 0.5 mM SO3 2- at pH 10 to form eaq -. Pharmaceuticals with the Ar-CF3 (fluoxetine) and Ar-F plus pyrazole-CF3 (sitagliptin) motifs were treated similarly. Parent molecule concentrations were monitored with high pressure liquid chromatography with a UV detector. Fluorine in the parent and product molecules was quantified with 19F-NMR and complete fluorine mass balances were obtained. High resolution mass spectrometry was used to further explore product identities. The major product for Ar-F compounds was fluoride. The Ar-CF3 model compounds led to fluoride and organofluorine products dependent on motif placement and reaction conditions. Trifluoroacetic acid was a product of 4-(trifluoromethyl)phenol and fluoxetine. Additional detected fluoxetine products identified using mass spectrometry resulted from addition of -OH to the aromatic ring, but a dealkylation product could not be distinguished from fluoxetine by 19F-NMR. Sitagliptin formed multiple products that all retained the pyrazole-CF3 motif while the Ar-F motif produced fluoride. 19F-NMR, mass spectrometry, and chromatography methods provide complementary information on the formation of fluorinated molecules by modification or fragmentation of the parent structure during photolysis, allowing screening for fluorinated photoproducts and development of fluorine mass balances.

SELECTION OF CITATIONS
SEARCH DETAIL
...