Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 8(31): 20168-75, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27443793

ABSTRACT

Simple Al/ZnO(NP)/Au diodes produced by spin coating of ZnO nanoparticle dispersions (ZnO(NP)) on Al/Al2O3 and Au substrates and subsequent Au deposition have been investigated to understand electron injection properties of more complex devices, incorporating ZnO(NP) as injection layer. Inverse I-V characteristics have been observed compared to conventional Al/ZnO(SP)/Au diodes produced by reactive ion sputtering of ZnO. SEM micrographs reveal that the void-containing contact of ZnO(NP) with the bottom Al electrode and the rough morphology of the top Au electrode are likely to be responsible for the observed injection and ejection probabilities of electrons. A simple tunneling model, incorporating the voids, explains the strongly reduced injection currents from Al whereas the top electrode fabricated by vapor deposition of Au onto the nanoparticle topology adopts the inverse ZnO(NP) morphology leading to enlarged injection areas combined with Au-tip landscapes. These tips in contrast to the smooth sputtered ZnO(SP) lead to electric field enhancement and strongly increased injection of electrons in reverse direction. The injected charge piles up at the barrier generated by voids between ZnO(NP) and the bottom electrode forcing a change in the barrier shape and therefore allowing for higher ejection rates. Both effects in combination explain the inverse I-V characteristic of nanoparticle based diodes.

2.
J Heart Lung Transplant ; 34(1): 113-121, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25447577

ABSTRACT

BACKGROUND: Ex vivo heart perfusion (EVHP) provides the opportunity to resuscitate unused donor organs and facilitates assessments of myocardial function that are required to demonstrate organ viability before transplantation. We sought to evaluate the effect of different oxygen carriers on the preservation of myocardial function during EVHP. METHODS: Twenty-seven pig hearts were perfused ex vivo in a normothermic beating state for 6 hours and transitioned into working mode for assessments after 1 (T1), 3 (T3), and 5 (T5) hours. Hearts were allocated to 4 groups according to the perfusate composition. Red blood cell concentrate (RBC, n = 6), whole blood (RBC+Plasma, n = 6), an acellular hemoglobin-based oxygen carrier (HBOC, n = 8), or HBOC plus plasma (HBOC+Plasma, n = 7) were added to STEEN Solution (XVIVO Perfusion, Goteborg, Sweden) to achieve a perfusate hemoglobin concentration of 40 g/liter. RESULTS: The perfusate composition affected the preservation of systolic (T5 dP/dtmax: RBC+Plasma = 903 ± 99, RBC = 771 ± 77, HBOC+Plasma = 691 ± 82, HBOC = 563 ± 52 mm Hg/sec; p = 0.047) and diastolic (T5 dP/dtmin: RBC+Plasma = -574 ± 48, RBC = -492 ± 63, HBOC+Plasma = -326 ± 32, HBOC = -268 ± 22 mm Hg/sec; p < 0.001) function, and the development of myocardial edema (weight gain: RBC+Plasma = 6.6 ± 0.9, RBC = 6.6 ± 1.2, HBOC+Plasma = 9.8 ± 1.7, HBOC = 16.3 ± 1.9 g/hour; p < 0.001) during EVHP. RBC+Plasma hearts exhibited less histologic evidence of myocyte damage (injury score: RBC+Plasma = 0.0 ± 0.0, RBC = 0.8 ± 0.3, HBOC+Plasma = 2.6 ± 0.2, HBOC = 1.75 ± 0.4; p < 0.001) and less troponin-I release (troponin-I fold-change T1-T5: RBC+Plasma = 7.0 ± 1.7, RBC = 13.1 ± 1.6, HBOC+Plasma = 20.5 ± 1.1, HBOC = 16.7 ± 5.8; p < 0.001). Oxidative stress was minimized by the addition of plasma to RBC and HBOC hearts (oxidized phosphatidylcholine compound fold-change T1-T5: RBC+Plasma = 1.83 ± 0.20 vs RBC = 2.31 ± 0.20, p < 0.001; HBOC+Plasma = 1.23 ± 0.17 vs HBOC = 2.80 ± 0.28, p < 0.001). CONCLUSIONS: A whole blood-based perfusate (RBC+Plasma) minimizes injury and provides superior preservation of myocardial function during EVHP. The beneficial effect of plasma on the preservation of myocardial function requires further investigation.


Subject(s)
Erythrocytes , Heart Transplantation , Heart Ventricles/drug effects , Myocardium , Organ Preservation Solutions/pharmacology , Perfusion/methods , Ventricular Function, Left/drug effects , Animals , Diastole , Disease Models, Animal , Extracorporeal Circulation , Female , Heart Failure/surgery , Swine , Systole
3.
J Heart Lung Transplant ; 32(7): 734-43, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23796155

ABSTRACT

BACKGROUND: Ex vivo heart perfusion (EVHP) has been proposed as a means to facilitate the resuscitation of donor hearts after cardiocirculatory death (DCD) and increase the donor pool. However, the current approach to clinical EVHP may exacerbate myocardial injury and impair function after transplant. Therefore, we sought to determine if a cardioprotective EVHP strategy that eliminates myocardial exposure to hypothermic hyperkalemia cardioplegia and minimizes cold ischemia could facilitate successful DCD heart transplantation. METHODS: Anesthetized pigs sustained a hypoxic cardiac arrest and a 15-minute warm ischemic standoff period. Strategy 1 hearts (S1, n = 9) underwent initial reperfusion with a cold hyperkalemic cardioplegia, normothermic EVHP, and transplantation after a cold hyperkalemic cardioplegic arrest (current EVHP strategy). Strategy 2 hearts (S2, n = 8) underwent initial reperfusion with a tepid adenosine-lidocaine cardioplegia, normothermic EVHP, and transplantation with continuous myocardial perfusion (cardioprotective EVHP strategy). RESULTS: At completion of EVHP, S2 hearts exhibited less weight gain (9.7 ± 6.7 [S2] vs 21.2 ± 6.7 [S1] g/hour, p = 0.008) and less troponin-I release into the coronary sinus effluent (4.2 ± 1.3 [S2] vs 6.3 ± 1.5 [S1] ng/ml; p = 0.014). Mass spectrometry analysis of oxidized pleural in post-transplant myocardium revealed less oxidative stress in S2 hearts. At 30 minutes after wean from cardiopulmonary bypass, post-transplant systolic (pre-load recruitable stroke work: 33.5 ± 1.3 [S2] vs 19.7 ± 10.9 [S1], p = 0.043) and diastolic (isovolumic relaxation constant: 42.9 ± 6.7 [S2] vs 65.2 ± 21.1 [S1], p = 0.020) function were superior in S2 hearts. CONCLUSION: In this experimental model of DCD, an EVHP strategy using initial reperfusion with a tepid adenosine-lidocaine cardioplegia and continuous myocardial perfusion minimizes myocardial injury and improves short-term post-transplant function compared with the current EVHP strategy using cold hyperkalemic cardioplegia before organ procurement and transplantation.


Subject(s)
Adenosine/therapeutic use , Heart Arrest, Induced , Heart Transplantation , Lidocaine/therapeutic use , Organ Preservation/methods , Animals , Death , Female , Perfusion , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...