Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 586(7828): 228-231, 2020 10.
Article in English | MEDLINE | ID: mdl-33028998

ABSTRACT

Annular structures (rings and gaps) in disks around pre-main-sequence stars have been detected in abundance towards class II protostellar objects that are approximately 1,000,000 years old1. These structures are often interpreted as evidence of planet formation1-3, with planetary-mass bodies carving rings and gaps in the disk4. This implies that planet formation may already be underway in even younger disks in the class I phase, when the protostar is still embedded in a larger-scale dense envelope of gas and dust5. Only within the past decade have detailed properties of disks in the earliest star-forming phases been observed6,7. Here we report 1.3-millimetre dust emission observations with a resolution of five astronomical units that show four annular substructures in the disk of the young (less than 500,000 years old)8 protostar IRS 63. IRS 63 is a single class I source located in the nearby Ophiuchus molecular cloud at a distance of 144 parsecs9, and is one of the brightest class I protostars at millimetre wavelengths. IRS 63 also has a relatively large disk compared to other young disks (greater than 50 astronomical units)10. Multiple annular substructures observed towards disks at young ages can act as an early foothold for dust-grain growth, which is a prerequisite of planet formation. Whether or not planets already exist in the disk of IRS 63, it is clear that the planet-formation process begins in the initial protostellar phases, earlier than predicted by current planet-formation theories11.

2.
Science ; 353(6307): 1519-1521, 2016 09 30.
Article in English | MEDLINE | ID: mdl-27708098

ABSTRACT

Gravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array, we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27. The arms extend to the disk outer regions and can be traced down to the midplane. These millimeter-wave observations also reveal an emission gap closer to the star than the spiral arms. We argue that the observed spirals trace shocks of spiral density waves in the midplane of this young disk.

3.
Nature ; 514(7524): 597-9, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25337883

ABSTRACT

Magnetic fields in accretion disks play a dominant part during the star formation process but have hitherto been observationally poorly constrained. Field strengths have been inferred on T Tauri stars and possibly in the innermost part of their accretion disks, but the strength and morphology of the field in the bulk of a disk have not been observed. Spatially unresolved measurements of polarized emission (arising from elongated dust grains aligned perpendicularly to the field) imply average fields aligned with the disks. Theoretically, the fields are expected to be largely toroidal, poloidal or a mixture of the two, which imply different mechanisms for transporting angular momentum in the disks of actively accreting young stars such as HL Tau (ref. 11). Here we report resolved measurements of the polarized 1.25-millimetre continuum emission from the disk of HL Tau. The magnetic field on a scale of 80 astronomical units is coincident with the major axis (about 210 astronomical units long) of the disk. From this we conclude that the magnetic field inside the disk at this scale cannot be dominated by a vertical component, though a purely toroidal field also does not fit the data well. The unexpected morphology suggests that the role of the magnetic field in the accretion of a T Tauri star is more complex than our current theoretical understanding.

SELECTION OF CITATIONS
SEARCH DETAIL
...