Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39005385

ABSTRACT

Multicellular spheroids embedded in 3D hydrogels are prominent in vitro models for 3D cell invasion. Yet, quantification methods for spheroid cell invasion that are high-throughput, objective and accessible are still lacking. Variations in spheroid sizes and the shapes of the cells within render it difficult to objectively assess invasion extent. The goal of this work is to develop a high-throughput quantification method of cell invasion into 3D matrices that minimizes sensitivity to initial spheroid size and cell spreading and provides precise integrative directionally-dependent metrics of invasion. By analyzing images of fluorescent cell nuclei, invasion metrics are automatically calculated at the pixel level. The initial spheroid boundary is segmented and automated calculations of the nuclear pixel distances from the initial boundary are used to compute common invasion metrics (i.e., the change in invasion area, mean distance) for the same spheroid at a later timepoint. We also introduce the area moment of inertia as an integrative metric of cell invasion that considers the invasion area as well as the pixel distances from the initial spheroid boundary. Further, we show that principal component analysis can be used to quantify the directional influence of a stimuli to invasion (e.g., due to a chemotactic gradient or contact guidance). To demonstrate the power of the analysis for cell types with different invasive potentials and the utility of this method for a variety of biological applications, the method is used to analyze the invasiveness of five different cell types. In all, implementation of this high-throughput quantification method results in consistent and objective analysis of 3D multicellular spheroid invasion. We provide the analysis code in both MATLAB and Python languages as well as a GUI for ease of use for researchers with a range of computer programming skills and for applications in a variety of biological research areas such as wound healing and cancer metastasis.

2.
Biofabrication ; 15(3)2023 05 31.
Article in English | MEDLINE | ID: mdl-37059087

ABSTRACT

Heart valve disease is associated with high morbidity and mortality worldwide, resulting in hundreds of thousands of heart valve replacements each year. Tissue engineered heart valves (TEHVs) have the potential to overcome the major limitations of traditional replacement valves; however, leaflet retraction has led to the failure of TEHVs in preclinical studies. Sequentially varying growth factors over time has been utilized to promote maturation of engineered tissues and may be effective in reducing tissue retraction, yet it is difficult to predict the effects of such treatments due to complex interactions between the cells and the extracellular matrix (ECM), biochemical environment, and mechanical stimuli. We hypothesize that sequential treatments of fibroblast growth factor 2 (FGF-2) and transforming growth factor beta 1 (TGF-ß1) can be used to minimize cell-generated tissue retraction by decreasing active cell contractile forces exerted on the ECM and by inducing the cells to increase the ECM stiffness. Using a custom culturing and monitoring system for 3D tissue constructs, we designed and tested various TGF-ß1 and FGF-2 based growth factor treatments, and successfully reduced tissue retraction by 85% and increased the ECM elastic modulus by 260% compared to non-growth factor treated controls, without significantly increasing the contractile force. We also developed and verified a mathematical model to predict the effects of various temporal variations in growth factor treatments and analyzed relationships between tissue properties, the contractile forces, and retraction. These findings improve our understanding of growth factor-induced cell-ECM biomechanical interactions, which can inform the design of next generation TEHVs with reduced retraction. The mathematical models could also potentially be applied toward fast screening and optimizing growth factors for use in the treatment of diseases including fibrosis.


Subject(s)
Fibroblast Growth Factor 2 , Transforming Growth Factor beta1 , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/metabolism , Tissue Engineering/methods , Heart , Extracellular Matrix/metabolism
3.
Cells ; 13(1)2023 12 25.
Article in English | MEDLINE | ID: mdl-38201249

ABSTRACT

Calcific aortic valve disease (CAVD) is the most common heart valve disease among aging populations. There are two reported pathways of CAVD: osteogenic and dystrophic, the latter being more prevalent. Current two-dimensional (2D) in vitro CAVD models have shed light on the disease but lack three-dimensional (3D) cell-ECM interactions, and current 3D models require osteogenic media to induce calcification. The goal of this work is to develop a 3D dystrophic calcification model. We hypothesize that, as with 2D cell-based CAVD models, programmed cell death (apoptosis) is integral to calcification. We model the cell aggregation observed in CAVD by creating porcine valvular interstitial cell spheroids in agarose microwells. Upon culture in complete growth media (DMEM with serum), calcium nodules form in the spheroids within a few days. Inhibiting apoptosis with Z-VAD significantly reduced calcification, indicating that the calcification observed in this model is dystrophic rather than osteogenic. To determine the relative roles of oxidative stress and extracellular matrix (ECM) production in the induction of apoptosis and subsequent calcification, the media was supplemented with antioxidants with differing effects on ECM formation (ascorbic acid (AA), Trolox, or Methionine). All three antioxidants significantly reduced calcification as measured by Von Kossa staining, with the percentages of calcification per area of AA, Trolox, Methionine, and the non-antioxidant-treated control on day 7 equaling 0.17%, 2.5%, 6.0%, and 7.7%, respectively. As ZVAD and AA almost entirely inhibit calcification, apoptosis does not appear to be caused by a lack of diffusion of oxygen and metabolites within the small spheroids. Further, the observation that AA treatment reduces calcification significantly more than the other antioxidants indicates that the ECM stimulatory effect of AA plays a role inhibiting apoptosis and calcification in the spheroids. We conclude that, in this 3D in vitro model, both oxidative stress and ECM production play crucial roles in dystrophic calcification and may be viable therapeutic targets for preventing CAVD.


Subject(s)
Aortic Valve Disease , Aortic Valve Stenosis , Aortic Valve/pathology , Calcinosis , Animals , Swine , Oxidative Stress , Antioxidants/pharmacology , Apoptosis , Ascorbic Acid , Methionine , Racemethionine
SELECTION OF CITATIONS
SEARCH DETAIL
...