Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 416, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35058432

ABSTRACT

The great economic significance of layered mafic-ultramafic intrusions like the Bushveld Complex of South Africa results from the existence within them of some layers highly concentrated in valuable elements. Here we address the origins of the Main Magnetite Layer, a globally important resource of Fe-Ti-V-rich magnetite. Previous models of in situ fractional magnetite crystallization require frequent ad hoc adjustments to the boundary conditions. An alternative model incorporating compositional convection near the top of the pile and infiltration of the pile from beneath by migrating intercumulus melt fits observations without any adjustments. Lateral variations in Cr concentration formerly held as indisputable evidence for in situ crystallization can be accommodated better by models of reactive melt infiltration from below. The choice of models has pivotal ramifications for understanding of the fundamental processes by which crystals accumulate and layers form in layered intrusions.

2.
Nat Commun ; 12(1): 505, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33479217

ABSTRACT

The Rustenburg Layered Suite of the Bushveld Complex of South Africa is a vast layered accumulation of mafic and ultramafic rocks. It has long been regarded as a textbook result of fractional crystallization from a melt-dominated magma chamber. Here, we show that most units of the Rustenburg Layered Suite can be derived with thermodynamic models of crustal assimilation by komatiitic magma to form magmatic mushes without requiring the existence of a magma chamber. Ultramafic and mafic cumulate layers below the Upper and Upper Main Zone represent multiple crystal slurries produced by assimilation-batch crystallization in the upper and middle crust, whereas the chilled marginal rocks represent complementary supernatant liquids. Only the uppermost third formed via lower-crustal assimilation-fractional crystallization and evolved by fractional crystallization within a melt-rich pocket. Layered intrusions need not form in open magma chambers. Mineral deposits hitherto attributed to magma chamber processes might form in smaller intrusions of any geometric form, from mushy systems entirely lacking melt-dominated magma chambers.

3.
Proc Natl Acad Sci U S A ; 114(10): 2485-2490, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28223492

ABSTRACT

The largest mass extinction event in Earth's history marks the boundary between the Permian and Triassic Periods at circa 252 Ma and has been linked with the eruption of the basaltic Siberian Traps large igneous province (SLIP). One of the kill mechanisms that has been suggested is a biogenic methane burst triggered by the release of vast amounts of nickel into the atmosphere. A proposed Ni source lies within the huge Noril'sk nickel ore deposits, which formed in magmatic conduits widely believed to have fed the eruption of the SLIP basalts. However, nickel is a nonvolatile element, assumed to be largely sequestered at depth in dense sulfide liquids that formed the orebodies, preventing its release into the atmosphere and oceans. Flotation of sulfide liquid droplets by surface attachment to gas bubbles has been suggested as a mechanism to overcome this problem and allow introduction of Ni into the atmosphere during eruption of the SLIP lavas. Here we use 2D and 3D X-ray imagery on Noril'sk nickel sulfide, combined with simple thermodynamic models, to show that the Noril'sk ores were degassing while they were forming. Consequent "bubble riding" by sulfide droplets, followed by degassing of the shallow, sulfide-saturated, and exceptionally volatile and Cl-rich SLIP lavas, permitted a massive release of nickel-rich volcanic gas and subsequent global dispersal of nickel released from this gas as aerosol particles.

4.
Nat Commun ; 7: 13385, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27841347

ABSTRACT

Layered intrusions represent part of the plumbing systems that deliver vast quantities of magma through the Earth's crust during the formation of large igneous provinces, which disrupt global ecosystems and host most of the Earth's endowment of Pt, Ni and Cr deposits. The Rustenburg Layered Suite of the enormous Bushveld Igneous Complex of South Africa has been presumed to have formed by deposition of crystals at the floor of a subterranean sea of magma several km deep and hundreds of km wide called a magma chamber. Here we show, using U-Pb isotopic dating of zircon and baddeleyite, that individual chromitite layers of the Rustenburg Layered Suite formed within a stack of discrete sheet-like intrusions emplaced and solidified as separate bodies beneath older layers. Our U-Pb ages and modelling necessitate reassessment of the genesis of layered intrusions and their ore deposits, and challenge even the venerable concept of the magma chamber itself.

5.
Proc Natl Acad Sci U S A ; 103(34): 12695-700, 2006 Aug 22.
Article in English | MEDLINE | ID: mdl-16908861

ABSTRACT

Understanding of the geochemistry of the chalcophile elements [i.e., Os, Ir, Ru, Pt, Pd (platinum-group elements), and Au, Cu, Ni] has been informed for at least 20 years by the common assumption that when crust-forming partial melts are extracted from the upper mantle, sulfide liquid in the restite sequesters chalcophile elements until the extent of partial melting exceeds approximately 25% and all of the sulfide has been dissolved in silicate melt [Hamlyn, P. R. & Keays, R. R. (1985) Geochim. Cosmochim. Acta 49, 1797-1811]. Here we document very high, unfractionated, chalcophile element concentrations in small-degree partial melts from the mantle that cannot be reconciled with the canonical residual sulfide assumption. We show that the observed high, unfractionated platinum-group element concentrations in small-degree partial melts can be attained if the melting takes place at moderately high oxygen fugacity, which will reduce the amount of sulfide due to the formation of sulfate and will also destabilize residual monosulfide solid solution by driving sulfide melts into the spinel-liquid divariant field. Magmas formed at high oxygen fugacity by small degrees of mantle melting can be important agents for the transfer of chalcophile elements from the upper mantle to the crust and may be progenitors of significant ore deposits of Pt, Pd, and Au.

6.
Nature ; 429(6991): 546-8, 2004 Jun 03.
Article in English | MEDLINE | ID: mdl-15175748

ABSTRACT

Deformation and melting of the crust during the formation of large impact craters must have been important during the Earth's early evolution, but such processes remain poorly understood. The 1.8-billion-year-old Sudbury structure in Ontario, Canada, is greater than 200 km in diameter and preserves a complete impact section, including shocked basement rocks, an impact melt sheet and fallback material. It has generally been thought that the most voluminous impact melts represent the average composition of the continental crust, but here we show that the melt sheet now preserved as the Sudbury Igneous Complex is derived predominantly from the lower crust. We therefore infer that the hypervelocity impact caused a partial inversion of the compositional layering of the continental crust. Using geochemical data, including platinum-group-element abundances, we also show that the matrix of the overlying clast-laden Onaping Formation represents a mixture of the original surficial sedimentary strata, shock-melted lower crust and the impactor itself.

SELECTION OF CITATIONS
SEARCH DETAIL
...